john wants to purchase a boat that costs $1,500. He signs an installment agreement requiring a 20% down payment. How much will john need for the down payment

Answers

Answer 1

Answer:

$300 down payment

Step-by-step explanation:

John wants to purchase a boat that costs $1,500. He signs an installment agreement requiring a 20% down payment. How much will john need for the down payment

20% = 0.20

0.20 * 1,500 = $300 down payment


Related Questions

i don't know how to identify the domain and range of the graph

Answers

The domain is the set of all possible values for x. All x values ( horizontal axis) that are going to be used

Domain = (-4,-1,0,4)

The range is the set of all possible y-values . All the y-values (vertical axis) that are used.

Range = (-5)

3/4 divided by 2/3 using fractions

Answers

To solve this divition we can write it like:

[tex]\frac{\frac{3}{4}}{\frac{2}{3}}[/tex]

So now we can multiplicate the numerator of the first fraction with the denominatior of the second fraction, and put the resould in the numerator of the quationt, ans the same operation for the numeratior with the numerator of the secon fraction and the denominator of the first fraction so:

[tex]\frac{3\cdot3}{4\cdot2}=\frac{9}{8}[/tex]

Type the correct answer in the box. Use numerals instead of words.The expression x^2 - 12x + 36 factors to (x - )^2

Answers

Explanation: Here we have a factorization problem and the way we solve it depends on the complexity and degree of the equation. We can see our equation is a simple quadratic function so we will use a simple method to solve it.

Step 1: Let's take a look at the illustration bellow

Step 2: As we can see above, we just need to find a way to represent the second term as a sum and the last term as multiplication using the same numbers.

Result: Once we found that this number is -6 so we can represent our factor as

[tex](x-6)^2[/tex]

And that is our final answer.

Caleb's recipe calls for 4.4 cups of an ingredient. His measuring bowl only has measurements marked in liters. Caleb knows that one cup is approximately 240 milliliters. Determine the number of liters of that ingredient that Caleb needs for his recipe.

Answers

[tex]\begin{gathered} \text{Caleb's recipe n}eeds\Rightarrow4.4\text{ cups of ingredient} \\ 1\text{ cup is equal to 240 milileters} \\ so,\text{ } \\ 1\text{cup}=240ml=0.24\text{ liter} \\ \text{then,} \\ \Rightarrow4.4cups=4.4\times0.24\text{ liter} \\ \Rightarrow1.056\text{ liter} \end{gathered}[/tex]

Latoya cut a circle into & equal sections and arranged the pieces to form a shape resembling a parallelogram. So in of

Answers

Based on the diagram, the base length of the new shape is half the circumference of the circle as indicated by 1/2C.

Find the equation of the line that contains the points (2,4) and (8,9). Write the equation in the form y=mx+b and identify m and b.m=b=

Answers

Find the equation of the line that contains the points (2,4) and (8,9). Write the equation in the form y=mx+b and identify m and b.

step 1

Find the slope

m=(9-4)/(8-2)

m=5/6

step 2

Find the equation in slope-intercept form

y=mx+b

we have

m=5/6

point (2,4)

substitute and solve for b

4=(5/6)(2)+b

4=(5/3)+b

b=4-5/3

b=7/3

therefore

y=(5/6)x+7/3

A regular polygon with 9 sides (a nonagon) has a perimeter of 72 inches. What is the area of this polygon? Provide mathematical evidence.

Answers

The perimeter of the regular nonagon is 72 inches, the length of each side can be determined as,

[tex]\begin{gathered} P=9s \\ 72=9s \\ s=8\text{ inches} \end{gathered}[/tex]

The diagram can be drawn as,

The value of apopthem a can be determined as, where n is the number of sides,

[tex]\begin{gathered} a=\frac{s}{2\tan (\frac{180^{\circ}}{n})} \\ =\frac{8}{2\tan20^{\circ}} \\ =10.98\text{ in} \end{gathered}[/tex]

The area can be determined as,

[tex]\begin{gathered} A=\frac{P\times a}{2} \\ =\frac{72\text{ inches}\times10.98\text{ inches}}{2} \\ =395.63in^2 \end{gathered}[/tex]

Thus, the required area of the polygon is 395.63 square inches.

make an equation to find the area of rectangle. move number and symbols to the line

Answers

Area of a rectangle

We know that the multiplication of both sides of the rectangle is the area of it.

In this case

Area: 6 x 8 = 48

ANYONE HELP ME WITH THE AREA OF THE FLOOR PLAN FOR THE OFFICE
NEED CLEAR EXPLAINATION AND ANSWER.

Answers

The area of the floor plan for the office is 2200 m².

We are given a diagram. The diagram shows the floor plan of an office. The height of the office is 50 meters. The length of the floor of the office is 55 meters. The width of the floor of the office is 40 meters. We need to find the area of the floor of the office.

The shape of the floor of the office is a rectangle. The area of a rectangle is calculated as the product of its length and width. Let the area of the floor of the office be represented by the variable "A".

A = 55*40

A = 2200

Hence, the area of the floor of the office is 2200 m².

To learn more about area, visit :

https://brainly.com/question/27683633

#SPJ1

A pound of pistachios cost 6.60. and you buy 2.75 pounds

Answers

By performing some simple mathematical operations, we know that the total cost of 2.75 pounds of pistachios is $18.15.

What are mathematical operations?An operation is a function in mathematics that transforms zero or more input values into a clearly defined output value. The operation's arity is determined by the number of operands. The rules that specify the order in which we should solve an expression involving many operations are known as the order of operations. PEMDAS stands for Parentheses, Exponents, Multiplication, Division, Addition Subtraction (from left to right).

So, the total cost will be:

1 pound of pistachios costs $6.60.We purchased 2.75 pounds.

Then, the total cost will be:

6.60 × 2.75$18.15


Therefore, by performing some simple mathematical operations, we know that the total cost of 2.75 pounds of pistachios is $18.15.

Know more about mathematical operations here:

https://brainly.com/question/28937023

#SPJ1

Correct question:

A pound of pistachios costs $6.60. and you buy 2.75 pounds. What is the total cost?

A boy at an amusement park has 65 ride tickets. Each ride on the roller coaster costs 7 tickets. After riding the roller coaster as many times as he can, how many tickets will the boy have left?

Answers

ANSWER

[tex]32\text{ tickets}[/tex]

EXPLANATION

The group consists of 4 friends and each friend has 12 tickets.

Each friend uses 4 tickets to ride the roller coaster.

To find the number of tickets each friend has after the ride, subtract the number of tickets used for the ride from the number of tickets each friend had initially.

That is:

[tex]\begin{gathered} \Rightarrow12-4 \\ 8 \end{gathered}[/tex]

Now, to find the number of tickets the group has, multiply the number of friends in the group by the number of tickets left:

[tex]\begin{gathered} 4\cdot8 \\ 32\text{ tickets} \end{gathered}[/tex]

f(x) = {(7,3), (5,3), (9,8).(11,4)}g(x) = {(5, 7),(3,5), (7,9), (9,11)}a) f-1(x)b) g-1(x)

Answers

Given the coordinates of the function;

f(x) = {(7,3), (5,3), (9,8).(11,4)}

The inverse of any coordinate points is gotten by changing the y coordinate valuewith the x coordinate values i.e y = x

f-1(x) = {(3,7), (3,5), (8,9), (4,11)

You can see that the x coordinates has been swapped with the y coordinates.

Similarly;

g-1(x) = {(7, 5),(5,3), (9,7), (11,9)}

The total number of photos on Hannah's camera is a linear function of how long she was in Rome. She already had 44 photos on her camera when she arrived in Rome. Then she took 24 photos each day for 6 days. What is the initial value of the linear function that represents this situation? 24 photos 44 photos 6 days o days per day

Answers

she already had 44 photos

She took 24 photos each day for 6 days.

The function is:

y= 44+24x

where y is the total number of photos and x is the number of days.

The initial value is when x=0

y= 44+24(0) =44

The initial value is 44.

A multiple choice test contains 10 questions with 5 answer choices. What is the probability of correctly answering 5 questions if you guess randomly on each question?A. 0.9936B. 0.2C. 0.0264D. 0.0003

Answers

If there are 10 questions with 5 answer choices, then first we need to find out the probability of getting the first questions randomly correct.

Therefore, that is:

[tex]\begin{gathered} Probability\text{ of getting 1 answer correct= }\frac{1}{5} \\ \\ Then\text{ if we need to get the second question correct it is:} \\ \frac{1}{5}(first\text{ question\rparen x }\frac{1}{5}=\text{ \lparen}\frac{1}{5})^2 \\ \\ And\text{ for the other questions applies the same. Therefore, if we need 5 correct answers, then:} \\ \frac{1}{5}\text{ x }\frac{1}{5}x\frac{1}{5\frac{}{}}x\frac{1}{5}x\text{ }\frac{1}{5}=\text{ \lparen}\frac{1}{5})^5\text{ = }\frac{1}{3125}=\text{ 0.0003} \end{gathered}[/tex]

The answer is D. 0.0003

which of the following is most likely to represent a fixed rate, secured debit?A- Student loanB- Credit CardC- Loan from a friend D- dealer-finaced auto loan

Answers

D because financing has a fixed rate

a friend's loan has no rate

the credit card varies the rate while you are using it

The student loan has no financing

Find the area of quadrilateral ABCD. Round the area to the nearest whole number, if necessary.у| A(-5,4)4B(0, 3)22F(-2,1)-226 xTC(4, -1)-4E(2, -3)D(4, -5)6The area issquare units.

Answers

We have a quadrilateral ABCD and we want to calculate the area.

We can divide it in three areas (two triangles and one rectangle) and then add the surfaces.

As it is rotated 45 degrees, we can define a "new unit" that is the diagonal of a square of 1 by 1 unit, in the scale of the graph.

This new unit, the diagonal that we will call "d", by the Pythagorean theorem, has a value of:

[tex]d=\sqrt{2}[/tex]

We will start then with the triangle ABF. It has a side BF that has a value of 2 diagonals (2d) and a side FA that has a value of 3 diagonals (3d). The area of a triangle is half the multiplication of this two sides, so we have:

[tex]\frac{\bar{BF}\cdot\bar{FA}}{2}=\frac{2d\cdot3d}{2}=3d^2=3(\sqrt{2})^2=3\cdot2=6[/tex]

The second triangle is CED. We repeat the process and we have:

[tex]\frac{\bar{CE}\cdot\bar{ED}}{2}=\frac{2d\cdot2d}{2}=2d^2=2\cdot2=4[/tex]

The rectangle BCEF has an area of:

[tex]\bar{BF}\cdot\bar{EF}=2d\cdot4d=8d^2=8\cdot2=16[/tex]

Now we have the three areas. If we add them we get the area of ABCD:

[tex]6+4+16=26[/tex]

The quadrilateral ABCD has an area of 26 units^2.

The park near Amber's house has a path around its perimeter 3 that is mile long. Amber's goal is to walk 4.5 miles a day. If 4 Amber reaches her daily goal, how many times will Amber walk around the park?

Answers

We know that

• The path is 3 miles long.

,

• Amber's goal is 4.5 miles a day.

To find the number of times she will walk around the park, we have to divide.

[tex]\frac{4.5}{3}=1.5[/tex]Hence, Amber will walk around 1 entire lap and a half.

For points K (-6,6) and P (-3,-2), find the following:m:| m:I m:Distance:Equation of a line 1:

Answers

From the question

We are given the points

[tex]K(-6,6),P(-3,-2)[/tex]

Finding the slopre, m

Slope is calculated using

[tex]m=\frac{y_{2_{}}-y_1}{x_2-x_1}[/tex]

From the given points

[tex]\begin{gathered} x_1=-6,y_1=6 \\ x_2=-3,y_2=-2 \end{gathered}[/tex]

Therefore,

[tex]\begin{gathered} m=\frac{-2-6}{-3-(-6)} \\ m=\frac{-8}{-3+6} \\ m=\frac{-8}{3} \end{gathered}[/tex]

Therefore, m = -8/3

The next thing is to find

[tex]\mleft\Vert m\mright?[/tex]

A slope parallel to m

For parallel lines, slopes are equal

Therefore,

[tex]\mleft\Vert m=-\frac{8}{3}\mright?[/tex]

Next, we are to find

[tex]\perp m[/tex]

A slope perpendicular to m

For perpendicular lines, the product of the slopes = -1

Therefore

[tex]\perp m=-\frac{1}{m}[/tex]

Hence,

[tex]\begin{gathered} \perp m=-\frac{1}{-\frac{8}{3}} \\ \perp m=\frac{3}{8} \end{gathered}[/tex]

Therefore,

[tex]\perp m=\frac{3}{8}[/tex]

Next, we are to find the distance KP

Using the formula

[tex]KP=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

This gives

[tex]\begin{gathered} KP=\sqrt[]{(-3-(-6))^2+(-2-6)^2} \\ KP=\sqrt[]{3^2+(-8)^2} \\ KP=\sqrt[]{9+64} \\ KP=\sqrt[]{73} \end{gathered}[/tex]

Therefore,

[tex]\text{Distance }=\sqrt[]{73}[/tex]

Next, equation of the line

The equation can be calculated using

[tex]\frac{y-y_1}{x-x_1}=m[/tex]

By inserting values we have

[tex]\begin{gathered} \frac{y-6}{x-(-6)}=-\frac{8}{3} \\ \frac{y-6}{x+6}=-\frac{8}{3} \\ y-6=\frac{-8}{3}(x+6) \\ y-6=-\frac{8}{3}x-6(\frac{8}{3}) \\ y-6=-\frac{8}{3}x-16 \\ y=-\frac{8}{3}x-16+6 \\ y=-\frac{8}{3}x-10 \end{gathered}[/tex]

Therefore the equation is

[tex]y=-\frac{8}{3}x-10[/tex]

graph a piecewise function with 3 equations and sketch a graph

Answers

Solution:

Given:

[tex]h(x)=\begin{cases}2x,x\le-2 \\ x^2-1,-2A piecewise function is a function that is defined by different formulas or functions for each given interval.

It is a function in which more than one formula is used to define the output over different pieces of the domain.

The function h(x) given has three outputs for three different domains.

[tex]\begin{gathered} \text{The first is a linear function;} \\ h(x)=2x \\ \\ \text{The second is a quadratic function;} \\ h(x)=x^2-1 \\ \\ \text{The third is a linear function;} \\ h(x)=x-3 \end{gathered}[/tex]

Therefore, the graph using a graph plotter (desmos) is as shown below;

given: s is the midpoint of QR , QR , PS and angle RSP and angle QSP are right angles prove PR is congruent to PQ

Answers

∆RSP ≈ ∆QSP through SAS congruency theorem. PR is congruent to PQ.

Given that,

S being the midpoint of QR

SR = QS            (∵ midpoint)

PS = PS  (common side/reflexive property)

Two right triangles are congruent due to

∵ PS ≅ PS                       (SAS congruency)

According to the SAS rule, two triangles are said to be congruent if any two sides and any angle contained between the sides of one triangle are equal to the second triangle's two sides and angle between its sides correspond to the first triangle's.

QS ≅ PS

Thus, ∆RSP ≈ ∆QSP through SAS congruency.

While PQ = PR               (by CPCT).

Hence, proved.

Therefore, ∆RSP ≈ ∆QSP through SAS congruency theorem. PR is congruent to PQ.

To learn more about congruency visit: https://brainly.com/question/7888063

#SPJ9

Find the area of a rectangle that is 3 3 over 4 inches long by 2 1 fourth inches wide. ANS.( Use mixed number) _______. in squared

Answers

Let's begin by listing out the given information:

[tex]\begin{gathered} Length(l)=3\frac{3}{4} \\ Width(w)=2\frac{1}{4} \\ Area=l\cdot w \\ Area=3\frac{3}{4}\cdot2\frac{1}{4} \\ Area=\frac{15}{4}\cdot\frac{9}{4}=\frac{15\cdot9}{4\cdot4} \\ Area=\frac{135}{16}=8\frac{7}{16} \\ Area=8\frac{7}{16}in^2 \\ \\ \therefore Area=8\frac{7}{16}in^2 \end{gathered}[/tex]

18 18 After bisecting the original angle, there are two angles that each measure 18°. Which statement is true? A) The original angle of 2° was bisected into two congruent angles. B) The original angle of 9° was bisected into two congruent angles. Eliminate The original angle of 36° was bisected into two congruent angles. D) The original angle of 72° was bisected into two congruent angles.

Answers

After bisecting the original angle, there are two angles that each measure 18°. Which statement is true? A) The original angle of 2° was bisected into two congruent angles. B) The original angle of 9° was bisected into two congruent angles. Eliminate The original angle of 36° was bisected into two congruent angles. D) The original angle of 72° was bisected into two congruent angles.​

we know that

when bisecting an angle, the angle is divided into two equal parts

so

The original measure of the angle is

18(2)=36 degrees

therefore

The statement that is true is

The original angle of 36° was bisected into two congruent angles

There are 38 coins in a collection of 20 paise coins and 25 paise coins. If the total value of the collection is Rupees 8.50, how many of each are there?

Answers

We will have the following:

*First:

**We stablish that x will represent the number of 20 paise coins.

**We stablish that y will represent the number of 25 paise coins.

Second: From this we will then have:

[tex]x+y=38[/tex]

&

[tex]20x+25y=850[/tex]

[This 850 is due to the fact that 8.50 Rupees are equal to 850 paise].

*Third: We solve for either x or y in the first equation:

[tex]x=38-y[/tex]

Now, we replace this in the second equation and solve for y:

[tex]20(38-y)+25y=850\Rightarrow760-20y+25y=850[/tex][tex]\Rightarrow5y=90\Rightarrow y=18[/tex]

So, we have that there are 18 25 paise coins.

Now, using this we solve for x in the first equation:

[tex]x+18=38\Rightarrow x=20[/tex]

So, we have that there are 20 20 pais coins.

For the function h(x) defined below . Find the function f(x) and g(x)

Answers

ANSWER:

1st option.

[tex]f\left(x\right)=x^3\text{ and }g\left(x\right)=\frac{x+2}{x}[/tex]

STEP-BY-STEP EXPLANATION:

We have the following composite function obtained from two functions:

[tex]h(x)=\:\left(f\circ g\right)\left(x\right)=\left(\frac{x+2}{x}\right)^3[/tex]

We can determine the functions as follows:

[tex]\begin{gathered} \left(f\circ g\right)\left(x\right)=f\left(g\left(x\right)\right) \\ \\ f\left(g\left(x\right)\right)=\left(\frac{x+2}{x}\right)^3 \\ \\ g(x)=\frac{x+2}{x},\text{ therefore} \\ \\ f(x)=x^3 \end{gathered}[/tex]

Therefore, the correct answer is the 1st option.

If f(x) = 2x^3 + 10x^2 + 18x + 10 and x + 1 is a factor of f(x), then find all of the zeros of f(x) algebraically

Answers

Given the polynomial:

[tex]f(x)=2x^3+10x^2+18x+10[/tex]

We know that (x + 1) is a factor of f(x). We divide f(x) by (x + 1):

Then:

[tex]f(x)=(x+1)(2x^2+8x+10)=2(x+1)(x^2+4x+5)[/tex]

For the quadratic term, we solve the following equation:

[tex]x^2+4x+5=0[/tex]

Using the general solution for quadratic equations:

[tex]\begin{gathered} x=\frac{-4\pm\sqrt{4^2-4\cdot1\cdot5}}{2\cdot1}=\frac{-4\pm\sqrt{16-20}}{2}=\frac{-4\pm\sqrt{4}}{2} \\ \\ \therefore x=-2\pm i \end{gathered}[/tex]

The zeros of f(x) are:

[tex]\begin{gathered} x_1=-1 \\ \\ x_2=-2-i \\ \\ x_3=-2+i \end{gathered}[/tex]

Z + 24 = -33one step equation

Answers

We solve as follows:

[tex]z=-57[/tex]

We operate like terms after substracting 24 from each side of the function.

y=2/3 × + 4. use this equation to find y for the following values of x. x=0

Answers

[tex]y\text{ = }\frac{2}{3}x\text{ + 4}[/tex]

a) for x = 0

y = (2/3) x 0 + 4

y = 0 + 4

y = 4

b) x = 3

y = (2/3) x 3 + 4

y = 6/3 + 4

y = 2 + 4

y = 6

c) x = 9

y = (2/3) x 9 + 4

y = 18/3 + 4

y = 6 + 4

y = 10

d) x = -9

y = (2/3) x (-9) + 4

y = -18/3 + 4

y = - 6 + 4

y = -2

e) x = 10

y = (2/3) x 10 + 4

y = 20/3 + 4

y = 32/3

f) x = 1/2

[tex]\begin{gathered} y\text{ = }\frac{2}{3}\text{ x }\frac{1}{2}\text{ + 4} \\ y\text{ = }\frac{1}{3}\text{ + 4} \\ y\text{ = }\frac{1\text{ + 12}}{3} \\ y\text{ = }\frac{13}{3} \end{gathered}[/tex]

ABC and BCD are identical triangles. The overlapping area is 19cm . Find the area ofthe shaded figure.

Answers

The area of the shaded figure is 45 [tex]cm^{2}[/tex]

It is given that ABC and BCD are identical triangles and the overlapping area is 19[tex]cm^{2}[/tex]

Now, to evaluate the area of the shaded figure, we will calculate the area of the two triangles ABC and BCD, then we will subtract the overlapping area from it.

So, by evaluating the figure, it comes out that the length of the triangle is 4 units and 1 unit is 2cm.

So, Height of the triangle = 4 * 2 cm = 8 cm

And the base of the triangle is 3 units, then,

Base of the triangle = 3* 2 cm = 6 cm

The area of the triangle = 1/2 * base* height

Area of triangle ABC = [tex]\frac{1}{2} *8*6 = 24cm^{2}[/tex]

The area of both the triangles = area(ABC) +area(BCD)

Since two the triangles are identical, their areas are also identical,

So, the Area of both the triangles = 2*area(ABC)  = 2*24 = 64[tex]cm^{2}[/tex]

Now, The area of the shaded figure = area(ABC) +area(BCD) - overlapping area.

The area of the shaded figure = 64 - 19 = 45 [tex]cm^{2}[/tex]

To read more about areas, visit https://brainly.com/question/27683633

#SPJ9

In ΔIJK, k = 53 cm, j = 66 cm and ∠J=64°. Find all possible values of ∠K, to the nearest 10th of a degree.

Answers

The value of ∠K is 46.2° as the definition of angle is "An angle is created by joining two line segments at one point, or we can say that an angle is the combination of two line segments at a common endpoint".

What is angle?

An angle is created by joining two line segments at one point, or we can say that an angle is the combination of two line segments at a common endpoint. When two straight lines or rays intersect at a single endpoint, an angle is created. The vertex of an angle is the location where two points come together. The Latin word "angulus," which means "corner," is where the word "angle" originates. Based on measurement, there are different kinds of angles in geometry. The names of fundamental angles include acute, obtuse, right, straight, reflex, and full rotation. A geometrical shape called an angle is created by joining two rays at their termini. In most cases, an angle is expressed in degrees.

Here,

Side i = 68.91521 cm

Side j = 66 cm

Side k = 53 cm

Angle ∠I = 69.8°

Angle ∠J = 64°

Angle ∠K = 46.2°

∠K= sin⁻¹(k·sin(J)/j)

=sin⁻¹(53.(sin 64°)/66)

=46.2°

Since the definition of an angle is "An angle is created by joining two line segments at one point, or we can say that an angle is the combination of two line segments at a common endpoint," the value of ∠K is 46.2°.

To know more about angles,

https://brainly.com/question/28451077?referrer=searchResults

#SPJ1

Hi can someone please give a full explanation on how to solve this problem? I’ll give Brainliest

Answers

Answer:

C is correct.

Step-by-step explanation:

The area of the rectangle is 10 × 6, or 60 square meters.

The area of the triangle is 1/2 × 7 × 6, or 21 square meters.

So the area of the shaded region is the area of the rectangle minus the area of the triangle. That area is 60 - 21, or 39 square meters. C is correct.

Other Questions
KH D m d c mEJOg3.65 g = [?] mg=Enter Complete the second row of the table.Express the volume in liters to three significant figures. Out of 200 people eating at a diner, 70% ordered sandwiches. How many people ordered sandwiches? Select one: 130 people in the sn1 mechanism conditions, silver nitrate is added. in principle, the nitrate anion can act as a nucleophile, but is so poor of a nucleophile that any chemical reactivity from it is negligible. knowing that, what is the nucleophile in the sn1 reaction in the reactions using silver nitrate if it is not the nitrate ion? Which value is equivalent to -7?A. -(-7)B. |-71C. 171D.-|-71 Helppppppppppp test helppppp for today plssss help 6 and 7 If cos B = 7/8, then what is the positive value of tan 1/2 B, in simplest radical formwith a rational denominator? is 53 prime or composite numberhow can I find the numbers for 58 The final products of photosynthesis are oxygen and ______A. SunlightB. WaterC. SugarD. Carbon dioxide find the slopes of the line that goes thru the following points Describe the cause of waves as a fluid motion Is the following statement about our solar system true or false?Mercury orbits the Sun at more than four times the speed of Saturn. CAN ANYONE PLS HELP ME ASAP Which equation represents a line which is parallel to y=0?A. x=1B. y=x+3C. y=xD. y=6 Parts of a CircleFor this assignment, you will draw and label the parts of a circle. Follow the directions below to construct your circle. When you are finished, you may scan your drawing and upload it. If you do not have a scanner, you may take a picture with a digital camera or cell phone and then embed the image into a Word document.Draw circle A.Draw radius AB.Draw diameter CD.Draw chord EF.Draw central angle GAH. i need help on this answer The mean mark of 10 boys is 58.If the mean mark of 7 of them is 61, what is the mean mark of the remaining 3 boys the radius of a circle is 1 what is the length of an arc that subtends an angle of 10pi/9 radians Which expressions simplify to a rational answer?Select each correct answer. 32522916115 Part of the proceeds from a garage sale was $305 worth of $5 bills if there were ) more bills than $20 bills find the number of each denomination