6. A van of mass 1200 kg was moving at a velocity of 8 m/s when it was involved in a head-on collisionwith a lorry moving in the opposite direction. Assuming that the van came to a stop after the collision...(a) calculate the momentum of the van before the collision;(b) calculate the momentum of the van after the collision(c) find the change in momentum of the van (d) if the van took .30 s to stop, calculate the force that acted on each driver

Answers

Answer 1

Given data:

* The mass of the van is 1200 kg.

* The velocity of the van before the collision is 8 m/s.

* The velocity of the van after the collision is 0 m/s.

Solution:

(a). The momentum of the van before the collision is,

[tex]p_i=mv_i[/tex]

where m is the mass of van, p_i is the momentum of van before the collision, and v_i is the velocity of van before the collision,

[tex]\begin{gathered} p_i=1200\times8 \\ p_i=9600kgms^{-1^{}} \end{gathered}[/tex]

Thus, the momentum of the van before the collision is 9600 kgm/s.

(b). The momentum of the van after the collision is,

[tex]p_f=mv_f[/tex]

weere p_f is the final momentum, and v_f is the final velocity of the van,

Substituting the known values,

[tex]\begin{gathered} p_f=1200\times0 \\ p_f=0^{} \end{gathered}[/tex]

Thus, the momentum of the van after the collision is 0 kgm/s.

(c). The change in the momentum of the van is,

[tex]\begin{gathered} dp=p_f-p_i \\ dp=0-9600 \\ dp=-9600kgms^{-1} \end{gathered}[/tex]

Here, the negative sign indicates that the momentum of van is decreasing with time.

Thus, the change in the momentum of the van is -9600 kgm/s.

(d). According to the Newton's second law, the force acting on the van in terms of the change in momentum is,

[tex]F=\frac{dp}{dt}[/tex]

where dt is the time interval in which the momentum of the van changes,

Substituting the known values,

[tex]\begin{gathered} F=-\frac{9600}{0.30} \\ F=-32000\text{ N} \\ F=-32\times10^3\text{ N} \\ F=-32\text{ kN} \end{gathered}[/tex]

Here, the negative sign is indicating the direction of force acting on the van is opposite to the direction of motion of van before the collision.

Thus, the force acting on the van is -32 kN.


Related Questions

This question is based on Oscillations and waves. I tried it for days and I just couldn't get it right.

Answers

ANSWER:

The maximun velocity is 16.07 m/s

At x = 0.26

The velocity is 8.36 m/s

The accelearion is 286.67 m/s^2

The resorting force is 86 N

STEP-BY-STEP EXPLANATION:

Given:

k = 310 N / m

Max distance = 0.5 m

Mass of block = 0.3 kg

Max velocity:

Using conservation of energy:

[tex]\begin{gathered} \frac{1}{2}kx^2=\frac{1}{2}mv^2 \\ v^2=\frac{kx^2}{m} \\ \text{ replacing} \\ v^2=\frac{310\cdot0.5^2}{0.3} \\ v=\sqrt[]{258.33} \\ v=16.07\text{ m/s} \end{gathered}[/tex]

At x = 0.26 m:

[tex]\begin{gathered} v^2=\frac{kx^2}{m} \\ v^2=\frac{310\cdot0.26^2}{0.3} \\ v=\sqrt[]{69.85} \\ v=8.36\text{ m/s} \end{gathered}[/tex]

Acceleration:

[tex]\begin{gathered} F=k\cdot x \\ F=m\cdot a \\ \text{ therefore} \\ m\cdot a=k\cdot x \\ a=\frac{k\cdot x}{m} \\ \text{ replacing} \\ a=\frac{310\cdot0.26}{0.3} \\ a=286.67\text{ }\frac{m}{s^2} \end{gathered}[/tex]

The resorting force:

[tex]\begin{gathered} F=m\cdot a \\ \text{ replacing} \\ F=0.3\cdot286.67 \\ F=86\text{ N} \end{gathered}[/tex]

i hve attached the question

Answers

The speed of the planet Venus  3.56 × 10⁵ m/s.

We are given that,

The radius of planet Venus = r = 1.08 × 10¹¹ m

The orbital time period = t = 225 days = 1.9 × 10⁶sec

The speed of planet Venus = v = ?

The formula of the time period of complete one revolution of planet to the sun is given as,

T = 2π/ω

ω = r.v

v = 2πr/T

Putting , the values in above equation we can get,

v = (2 × 3.14 ×  1.08 × 10¹¹ m)/ ( 1.9 × 10⁶sec)

v = 3.56 × 10⁵ m/s

Therefore , the speed of planet Venus would be  3.56 × 10⁵ m/s

To know more speed

https://brainly.com/question/28224010

#SPJ1

You wish to lift a 720N crate of bricks to the 3rd floor of a building in a construction site. The 3rd floor is 16m high. How much work will that require?

Answers

ANSWER

[tex]11,520J[/tex]

EXPLANATION

Parameters given:

Weight (force), F = 720N

Height (distance), d = 16m

To find the work required to lift the crate to the 3rd floor, we have to find the product of the force (weight of the crate) and the distance it will be lifted.

Therefore, we have:

[tex]\begin{gathered} W=F\cdot d \\ W=720\cdot16 \\ W=11,520J \end{gathered}[/tex]

That is the work that it will require.

You yell down a very deep well and it takes 1.5 s for your echo to return. If the speed of sound is 340 m/s then how deep is the well ?

Answers

We know that

• The time of the echo to return is 1.5 seconds.

,

• The speed of the sound is 340 m/s.

It's important to consider that the sound wave has a constant speed, that is, it doesn't change its velocity. Therefore, we have to use the relation

[tex]d=v\cdot t[/tex]

Where t = 1.5 sec and v = 340 m/s. Let's find d

[tex]\begin{gathered} d=340m/s\cdot1.5\sec \\ d=510m \end{gathered}[/tex]Hence, the well is 510 meters deep.

I think this is all statements are true but I just want to make sure

Answers

Given that a bug flies into the windshield of a car going. Let's select the correct statements.

According the NEwton's third law, the force exerted on the bug by the car is equal to the force extered on the car by the bug.

To determine the acceleration, we have:

[tex]a=\frac{F}{m}[/tex]

Where:

F is the force

m is the mass

The mass of the car will be greater than the mass of the bug.

Since the mass of the car is greater than the mass of the bug and they have the same force, we can say the acceleration of the bug is greater than the acceleration of the car.

Statement B is correct.

The force of impact is the same for both according to Newton's third Law.

Both the car and the bug deliver the same magnitude of impulse on each other.

Therefore, all statements are correct.

ANSWER:

All statements are true.

I need help with #2 it off s for practice

Answers

First, find the acceleration using Newton's Second Law.

[tex]\begin{gathered} F=ma \\ a=\frac{F}{m} \end{gathered}[/tex]

Where F = 8.10x10^5 N and m = 1.40x10^7 kg.

[tex]a=\frac{8.10\times10^5N}{1.40\times10^7\operatorname{kg}}=5.79\times10^{-2}\cdot\frac{m}{s^2}[/tex]

Then, use a formula that relates acceleration, initial velocity, final velocity, and time.

[tex]v_f=v_0+at[/tex]

Solve for t because the problem is asking to find the time.

[tex]\begin{gathered} v_f-v_0=at_{} \\ t=\frac{v_f-v_0}{a} \end{gathered}[/tex]

Where vf = 64 km/h, v0 = 0, and a = 5.79x10^-2 m/s^2. Before we continue, we need to transform the final velocity to m/s.

[tex]v_f=64\cdot\frac{km}{h}\cdot\frac{1000m}{1\operatorname{km}}\cdot\frac{1h}{3600\sec}=17.78\cdot\frac{m}{s}[/tex]

Once we have the velocity transformed, we are able to find t.

[tex]\begin{gathered} t=\frac{17.78\cdot\frac{m}{s}-0}{5.79\times10^{-2}\cdot\frac{m}{s^2}} \\ t=3.07\times10^2\sec \\ t=307\sec \end{gathered}[/tex]

But, the answer must be in minutes.

[tex]t=307\sec \cdot\frac{1\min}{60\sec}=5.12\min [/tex]

Therefore, it takes 5.12 minutes.

Water flows through a pipe diameter of 8.000 cm at 49.0 m/min. Find the flow rate in m3/min

Answers

We are asked to determine the volumetric flow rate through a pipe of diameter 8.000 cm. To do that we will use the following formula:

[tex]R=Av[/tex]

Where:

[tex]\begin{gathered} R=\text{ volumetric flow rate} \\ A=\text{ cross-area of the pipe} \\ v=\text{ velocity of the flow} \end{gathered}[/tex]

The cross-area of the pipe is the area of a circle and is given by:

[tex]A=\frac{\pi D^2}{4}[/tex]

Where:

[tex]\begin{gathered} A=\text{ cross-area} \\ D=\text{ diameter} \end{gathered}[/tex]

Before we determine the area we will convert the diameter from cm to meters using the following conversion factor:

[tex]100cm=1m[/tex]

Multiplying by the conversion factor we get:

[tex]8.000cm\times\frac{1m}{100cm}=0.080m[/tex]

Now, we plug in the value in the formula for the area:

[tex]A=\frac{\pi(0.080m)^2}{4}[/tex]

Solving the operations:

[tex]A=0.005m^2[/tex]

Now, we plug in the values of area and velocity in the formula or the volumetric flow rate:

[tex]R=(0.005m^2)(49.0\frac{m}{\min })[/tex]

Solving the operations:

[tex]R=0.246\frac{m^3}{min}[/tex]

Therefore, the flow rate is 0.246 cubic meters per minute.

A truck can travel at 100 km/hr How long would it take to drive 900km?

Answers

Given:

The speed of the truck is,

[tex]v=100\text{ km/hr}[/tex]

The distance is,

[tex]s=900\text{ km}[/tex]

The time to drive this distance is,

[tex]t=\frac{s}{d}[/tex]

Substituting the values we get,

[tex]\begin{gathered} t=\frac{900}{100} \\ =9\text{ hrs} \end{gathered}[/tex]

Hence, the time is 9 hrs.

How much work must be done to stop a 1100-kg car traveling at 112 km/h?(Hint: You will need to convert the speed first.)Answer: ___________ J (round to the nearest whole number)

Answers

According to the Work-Energy Theorem, the work done on an object is equal to the change in the kinetic energy of the object:

[tex]W=\Delta K[/tex]

Since the car ends with a kinetic energy of 0J (because it stops), then the work needed to stop the car is equal to the initial kinetic energy of the car:

[tex]K=\frac{1}{2}mv^2[/tex]

Replace m=1100kg and v=112km/h. Write the speed in m/s. Remember that 1m/s = 3.6km/h:

[tex]\begin{gathered} K=\frac{1}{2}(1100kg)\left(112\frac{km}{h}\times\frac{1\frac{m}{s}}{3.6\frac{km}{h}}\right)^2=532,345.679...J \\ \\ \therefore K\approx532,346J \end{gathered}[/tex]

Therefore, the answer is: 532,346 J.

How much heat must be removed from 750 grams of water at 0°C to form ice at 0°C?

Answers

ANSWER:

250500 J

STEP-BY-STEP EXPLANATION:

Given:

Mass (m) = 750 grams

We can determine the amount of heat removed by taking into account the following image:

This means that to go from water to ice there is an absorbed radiation dose of 334 J/g, therefore, the heat removed is:

[tex]\begin{gathered} Q=m\cdot a \\ \\ \text{ We replacing:} \\ \\ Q=750\cdot334 \\ \\ Q=250500\text{ J} \end{gathered}[/tex]

The heat removed is 250500 joules.

A human heart found to beat seventy five times in a minute. Calculate the beat frequency?​

Answers

[tex]{ \green{ \tt{f = \frac{number \: of \: beats}{time \: taken}}}} [/tex]

[tex]{ \green{ \tt{number \: of \: beats = 75}}}[/tex]

[tex]{ \green{ \tt{time \: taken =1 \: min \: = 60 \: sec}}}[/tex]

[tex]{ \red{ \sf{f = \frac{ \cancel{75^{3}}}{ \cancel{ 60_{4} }}}}}[/tex]

[tex]{ \blue{ \boxed{ \purple{ \sf{f = \frac{3}{4} = 1.2 {s}^{ - 1}}}}}} [/tex]

___________________________________

[tex]{ \blue{ \sf{T = \frac{1}{f}}}} [/tex]

[tex]{ \blue{ \sf{T = \frac{1}{ \purple{ \sf{1.2}}}}}} [/tex]

[tex]{ \boxed{ \red{ \sf{T = 0.8 \: S}}}}[/tex]

12000 inches to yards

Answers

ANSWER

[tex]\begin{equation*} 333.33\text{ yds} \end{equation*}[/tex]

EXPLANATION

We want to convert 12000 inches to yards.

To do this, divide the value in inches by 36:

[tex]\begin{gathered} 1\text{ in }=\frac{1}{36}\text{ yd} \\ \\ 12000\text{ in }=\frac{12000}{36}\text{ yds }=333.33\text{ yds} \end{gathered}[/tex]

That is the answer.

A can sits on a vertical wooden fencepost 1.9 meters above the ground. Billy picks up a small rock, aims at an angle ϴ = 25⁰ above the horizontal and throws the rock, releasing it 1 m above the ground with an initial speed of v0 =10 m/s. Boom! He hits the can! How far away is the fencepost?

Answers

Given,

Height of the fencepost, h=1.9 m

Angle at which the rock was thrown, θ=25°

The height at which the rock was released, a=1 m

The initial speed of the rock, v₀=10 m/s

Referring to the diagram,

[tex]\tan \theta=\frac{h-a}{d}[/tex]

On rearranging the above equation,

[tex]d=\frac{h-a}{\tan \theta}[/tex]

On substituting the known values,

[tex]d=\frac{1.9-1}{\tan 25^0}=1.93\text{ m}[/tex]

Therefore the fencepost is at a distance of 1.93 m

URGENT!! ILL GIVE
BRAINLIEST!!!! AND 100 POINTS!!!!!!

A feather and a bowling ball are each dropped from an equal height in a vacuum and land at the same time. Which graph shows the total mechanical energy of the bowling ball as it falls?

Answers

The total mechanical energy of the bowling ball and the feather is shown by the graph in option D

What is the total mechanical energy?

We know that the mechanical energy is the energy that is possessed by a body by virtue of its motion or by virtue of its staying at a place. Thus mechanical energy is possessed by an object that is moving or by an object that is at rest.

In this case, we have a  feather and a bowling ball are each dropped from an equal height in a vacuum and land at the same time. We know that the mechanical energy of the two objects must be constant. This is because, the potential energy of the feathers and the ball at a height is converted to kinetic energy as the two objects begin to move.

The graph that would show the total energy must be one in which the energy axis of the graph is constant as we see in option D.

Learn  more about mechanical energy:https://brainly.com/question/13552918

#SPJ1

Answer:

the answer is D

Explanation:

I was told it was 5.886 J by another tutor on here but that was incorrect so just trying again

Answers

The potential energy of gravity is given by:

[tex]\begin{gathered} E=mgh \\ where: \\ m=0.3 \\ h=2 \\ g=9.8 \\ so: \\ E=0.3\cdot2\cdot9.8 \\ E\approx5.9J \end{gathered}[/tex]

Answer:

5.9 J

I need help with this table pleasecalculate relative density of steel. Use table 3

Answers

Take into account that the relative density is given by:

[tex]\rho_{\text{rel}}=\frac{\rho}{\rho_{\text{water}}}[/tex]

where ρ, in this case, is the density of the steel and ρwater is the density of water (1000 kg/m^3).

The density of the steel is:

[tex]\rho=\frac{\text{mass}}{\text{volume}}[/tex]

Based on table 3, you have:

mass = 50.7 g = 0.0507 kg

volume = 0.0000063 m^3

[tex]\rho=\frac{0.0507kg}{0.0000063m^3}\approx8047.62\frac{kg}{m^3}[/tex]

Then, for the relative density you obtain:

[tex]\rho_{\text{rel}}=\frac{\rho}{\rho_{\text{water}}}=\frac{8047.62\frac{kg}{m^3}}{1000\frac{kg}{m^3}}\approx8.048[/tex]

Hence, the relative density of steel is 8.048

If you have a convex lens whose focal length is 10.0 cm, where would you place an object in order to produce an image that is virtual?

Answers

When an object is placed between first focus and optical center of a convex lens then virtual image is produced.

Here , focal length is 10.0 cm . So object distance should be less than 10.0 cm

Final answer is : between focus and optical center of the lens

A 0.2-kg aluminum plate, initially at 20°C, slides down a 15-m-long surface, inclined at a 30°angle to the horizontal. The force of kinetic friction exactly balances the component ofgravity down the plane so that the plate, once started, glides down at constant velocity. If90% of the mechanical energy of the system is absorbed by the aluminum, what is itstemperature increase at the bottom of the incline? (Specific heat for aluminum is 900J/kg⋅°C.) Why do I multiply 15 by sin30?

Answers

A scheme of a the given situation is shown below:

First, consider that the work over the plate is done only by the component of the weight parallel to the incline (due to the perpendicular component is balanced by the friction force), then, the work on the plate is:

W = m*g*d*sinθ

where,

m: mass = 0.2kg

d: length of the incline = 15m

g: gravitational acceleration constant = 9.8m/s^2

θ = 30

By replacing the previous values into the expression for W, you obtain:

W = (0.2 kg)(9.8 m/s^2)(15 m)sin(30)

W = 14.7 J

Now, take into account that the amount of heat absorbed by the aluminum plate is given by the following formula:

Q = m*c*ΔT

Q: heat

m: mass

c: specific heat

ΔT: change in tempetaure

Take into account that the 90% of the mechanical energy is absorbed by the plate, which means that 0.9 of the work is converted to absorbed heat by the plate.

Then, you can write:

0.9W = Q

0.9(14.7J) = Q

13.23J = Q

Replace the given expression for Q into the previous equation and solve for ΔT, as follow:

m*c*ΔT = 13.23 J

ΔT = 13.23J/(m*c)

Now, replace the values of m and c for aluminum and simplify:

ΔT = 13.23J/(0.2kg*900J/kg°C)

ΔT = 0.0735°C

Hence, the temperature increase at the bottom of the incline is approximately 0.07°C

In the graph of a bus his journey through town. Which of the following choices best represent where the bus is decelerating

Answers

Answer:

The bus is decelerating from B to C

Explanation:

The graph given shows the velocity of a bus at certain points in time. Higher the point on the graph, the higher the veocity. Now, the bus decelerates when its speed reduces from a higher value to a lower value. This we see as happening from point B to point C.

Hence, the bus decelerates from B to C.

At other points, you see the bus as either accelerating ( from O to A and D to E) or standing still (from A to B, C to D, and E to F). Only from B to C does the bus decelerate.

A 10 gram ball is rolling at 3 m/s. Calculate its kinetic energy.

Answers

ANSWER:

0.045 joules

STEP-BY-STEP EXPLANATION:

Given:

mass (m) = 10 g = 0.01 kg

velocity (v) = 3 m/s

The kinetic energy is given by the following formula:

[tex]K_E=\frac{1}{2}mv^2[/tex]

We replacing:

[tex]\begin{gathered} K_E=\frac{1}{2}\cdot0.01\cdot3^2 \\ K_E=0.045\text{ J} \end{gathered}[/tex]

The kinetic energy is 0.045 joules.

For an object starting from rest and accelerating with constantacceleration, distance traveled is proportional to the square of thetime. If an object travels 2.0 furlongs in the first 2.0 s, how far willit travel in the first 4.0 s?

Answers

Since the object is accelerating with constant acceleration we can use the following formula for the position of the object:

[tex]x=x_0+v_0t+\frac{1}{2}at^2[/tex]

where x0 is the initial position, v0 is the initial velocity, a is the acceleration and t is the time. In this case, the initial position and velocity are zero. Plugging the values given we have:

[tex]\begin{gathered} 2=\frac{1}{2}a(2)^2 \\ 2=2a \\ a=1 \end{gathered}[/tex]

Hence, the acceleration of the object is 1 furlong per second per second.

Once we know the acceleration we can use the same formula to determine how far the object will travel in four seconds.

[tex]\begin{gathered} x=\frac{1}{2}(1)(4)^2 \\ x=\frac{16}{2} \\ x=8 \end{gathered}[/tex]

Therefore, the object will travel 8 furlongs in four seconds.

If the man and woman are taken to a planet where the acceleration due to gravity is twice that of earth repeat the woman mass was 25kg on earth and the man was 300N on another planet

Answers

The mass of the woman is 25 kg because the mass is constant.

The mass of the man can be found using the formula: W = mg, where g is double Earth's gravity.

[tex]\begin{gathered} m=\frac{W}{g} \\ m=\frac{300N}{2\cdot9.8\cdot\frac{m}{s^2}} \\ m=\frac{300}{19.6}kg \\ m\approx15.3\operatorname{kg} \end{gathered}[/tex]

The mass of the man is 15.3 kg.

The weight of the man on Earth can be found with the same formula but using Earth's gravity.

[tex]\begin{gathered} W=15.3\operatorname{kg}\cdot9.8\cdot\frac{m}{s^2} \\ W=149.94N \end{gathered}[/tex]

The weight of the man on Earth is 149.94 N.

At last, the weight of the woman on Earth can be found using the same method before.

[tex]\begin{gathered} W=25\operatorname{kg}\cdot9.8\cdot\frac{m}{s^2} \\ W=245N \end{gathered}[/tex]

The weight of the woman on Earth is 245N.

explain how the intensity of the UV light vaires across the Earth

Answers

Some factors determine the amount of UV radiation that reach certain part of Earth's surface. They are listed and briefly explained below:

• Cloud coverage. Water molecules on clouds scatter the radiation, hence the more clouds the less UV radiation.

,

• Ozone. Similarly as cloud coverage, the more concentration of ozone the less UV radiation that reaches the surface of the Earth.

,

• Angle of incidence. If the angle of incidence of the UV light is oblique the light will spread in a wider area, and hence the intensity is spread across this area.

,

• Aerosols. The molecules of aerosols also scatter the UV light.

,

• Elevation. The more the elevation the greater the amount of UV light.

Help me with number 1 I’m very lost. I just need the equation. No explanation I’m stuck on 1 part.

Answers

Given data:

* The value of angular velocity is,

[tex]\omega=1.3\text{ rad/s}[/tex]

Solution:

(a). The time period of the oscillation in terms of the angular velocity is,

[tex]T=\frac{2\pi}{\omega}[/tex]

Substituting the known values,

[tex]\begin{gathered} T=\frac{2\pi}{1.3} \\ T=4.83\text{ s} \end{gathered}[/tex]

Thus, the time period of oscillation is 4.83 s.

(b). The frequency of the oscillation in terms of the time period is,

[tex]undefined[/tex]

1 pts
An coconut with a mass of 2 kg and a feather with a mass of 0.01 kg fall from a tree through the air to the ground
below, both eventually reaching terminal velocity. At terminal velocity, the amount of air-rresistance force what is the answer ? A grather on the coconut B the same on each C grather on the feather

Answers

Take into account that air-resistance force is greater against bodies with lower densities.

In this case, the feather has a lower density than the coconut, then, you can conclude that air-resistance force is greater on the feather (option C).

Can anyone help me in this question, Please?

Answers

The net force acting on the mass [tex]m_{1}[/tex] is 12 N and the tension (T) in the string is 42 N.

Both the blocks will move with the same acceleration, that is, a = 3 [tex]m/s^{2}[/tex]

Now, from the free-body diagram of the block [tex]m_{1}[/tex]

T - F = [tex]m_{1} a[/tex]

It is given that F = 30 N

and [tex]m_{1} = 4 kg[/tex]  ,  a = 3[tex]m/s^{2}[/tex]

Putting all these values, we get:

T - 30 = 4*3 = 12

T = 12 + 30

T = 42 N

Hence, the tension in the string = 42 N

Now, the net force acting on the mass [tex]m_{1}[/tex] is

[tex]F_{net}[/tex] = T - F = 42 - 30 = 12 N

To read more about tension, visit  https://brainly.com/question/11348644

#SPJ1

A wheel Was spinning at 2.8 rad/s. It took 3.2 seconds to stop completely. What is the acceleration of the wheel?

Answers

Given

The angular velocity is

[tex]\omega=2.8\text{ rad/s}[/tex]

The time taken,

[tex]t=3.2s[/tex]

To find

The acceleration of the wheel

Explanation

The acceleration is

[tex]\begin{gathered} \alpha=\frac{\omega}{t} \\ \Rightarrow\alpha=\frac{2.8}{3.2}=\frac{0.875rad}{s^2} \end{gathered}[/tex]

Conclusion

The acceleration is

[tex]0.875\text{ rad/s}^2[/tex]

If a rock has 376 J of potential energy when it’s held 10.1 m above the ground what is its mass? Round to the nearest tenth

Answers

Answer: 3.8 kg

Explanation:

The formula for calculating potential energy is expressed as

Potential energy = mgh

where

m is the mass of the object

g is the acceleration due to gravity

h is the height above the ground

From the information given,

Potential energy = 376

g = 9.8 m/s^2

h = 10.1

Thus,

376 = m x 9.81 x 10.1

376 = 99.081m

m = 376/99.081

m = 3.8 kg

The mass is 3.8 kg

What is the relationship. Stern average kinetic energy of a gas and it’s temperature?

Answers

Average kinetic energy is directly proportional to its temperature-

E= f/2 N k T

E= energy

T= temperature

This is the correct answer

A radioactive tracer has a half-life of two hours how much of a 2500 g sample will be available after 18 hours?

Answers

ANSWER:

4.88 grams

STEP-BY-STEP EXPLANATION:

We must first calculate how many half-life there are in 18 hours, knowing that each half-life takes 2 hours.

[tex]\frac{18}{2}=9\text{ half-life}[/tex]

Now, knowing this, we can calculate the number of grams applying 9 times the half-life, like this:

[tex]\frac{2500}{2^9}=4.88\text{ g}[/tex]

Which means that after 18 hours there are 4.88 grams

Other Questions
Woad holder mange en windows-17Grado2rean, thetwo w Wawie kan 137( wow month am wa mama w War[mmer You are part of a railroad crew that is connecting empty boxcars to a locomotive. You hitch 13 boxcars before lunch and 6 more after lunch. The total weight of covered wagons is 627 tons. Write and solve an equation to find the weight of each boxcar. june 2019 mexican peso futures contract has a price of $0.05179 per mxn. you believe the spot price in june will be 0.04515 per mxn. a. what speculative position would you enter into to attempt to profit from your beliefs? Martha opened a savings account and deposited 400.00 the account earns 1%interest compounded annually what is the balance after 3 years The shorter leg of a 30-60-90 triangle measures 9sqrt3 inches. What is the length of the longer leg? OA. 27 inches OB. 27sqrt3 inches OC. 18 inches OD. 18sqrt3 inches four students write algebraic math expressions and equations on their whiteboard. Which of the following students wrote expressions? What intermolecular force is present for Ne to form a liquid at low temperatures?a) London Dispersion Forcesb) Hydrogen bondingc) Dipole - Dipole forcesd) Ionic bonds Which strategies should be used to answer short answer or essay questions? Check all that apply. 16. The table below shows the population of California from 2010 to 2019. The arcade charges $125.00 to reserve the location, and then $15.00 per person. Which expressionrepresents the total cost for any number of people n? suppose a 5 minute overseas call costs 5.91 and a 10 minute call costs 10.86. the cost of the call and length of the call are related. the cost of each minute is constant. How long can you talk on th phone if you only have 12.00 to spend on the call? if andrew can run 60 meters in 6 seconds, how many meters can he run in 1 second? Answer the statistical measures and create a box and whiskers plot for the followingset of data.4,4,5,5,5,6,6, 8, 9, 10, 12, 14, 14, 15, 17 What was the primary passage deleted from Jefferson's draft of the Declaration of Independence?OA passage blaming George Ill for slavery.OA passage promising land to Indigenous peoples.OA passage giving people freedom of religion and speech. The cost of making a large circle is an amount in dollars and cents. The cost of making the smaller circle is 3/4 the cost of making the larger circle. Is the cost of making the smaller circle a rational or irrational number? Justify your answer. Use elimination to solve each system of equations.4x + y = 233x - y = 12Use elimination to solve each system of equations.4x + y = 233x - y = 12 Giotto's Madonna and Child1. Describe this piece of artwork.2. Explain the method Giotto used to give the painting a 3D effect.3. What do some of the elements in the painting represent?4. What do you find interesting about this piece of artwork? According to the British, what was the main purpose of fighting the American Revolution?O To keep the British Empire intact O To settle boundary disputes north of Mexico O To secure the fur trade in the name of England O To stop merchants from establishing illegal trade routes Please I need help on this ASAP Claire has a loyalty card good for a discount at her local grocery store. The item she wants to buy is priced at $27, before discount and tax. After the discount, and before tax, the price is $25.38. Find the percent discount.