How many L of solution do you have if you dissolve 5 moles of salt in enough water to make a 0.5 M solution?

Answers

Answer 1
Answer:

10L

Explanations:

The formula for calculating the molarity of a solution is expressed as:

[tex]molarity=\frac{moles}{volume}[/tex]

Given the following parameters

• Moles of salt = 5 moles

,

• Molarity of solution = 0.5M

Substitute the given parameters into the formula

[tex]\begin{gathered} volume=\frac{moles}{molarity} \\ volume=\frac{5moles}{0.5M} \\ volume=10L \end{gathered}[/tex]

Hence the required volume of the solution is 10L


Related Questions

In which of the following would the particles be moving faster? A. ice at -20 °C B. water at 20°CC. steam at 110°CD. boiling water

Answers

ANSWER

Option C

EXPLANATION

The collision between particles of substance increases with an increase in the temperature.

Recall, that matter exists in three states which are;

solid

liquid

gas

The particles will move faster is gas because the intermolecular force binding the particles together is very weak and therefore, the collision between the particles are very fast

Therefore, the particles of steam at 110 degrees Celcius will move faster

Option C is correct

7.0 g of nitrogen is reacted with 5.0 g of hydrogen to produce ammonia according to the chemical equation shown below. Which one of the following statements is false? N2(g) + 3 H2(g) → 2 NH3(g)options:3.5 g of hydrogen are left overAll of them are falseHydrogen is the excess reactant.Nitrogen is the limiting reactant.The theoretical yield of ammonia is 15 g.

Answers

Step 1

N2(g) + 3 H2(g) → 2 NH3(g) (must be balanced)

The limiting reactant

Data needed:

The molar mass:

For N2) 28 g/mol

For H2) 2 g/mol

For NH3) 17 g/mol

Procedure:

28 g N2 ------ 3 x 2 g H2

7.0 g N2------- X = 1.5 g H2

According to this, for 7.0 g N2, 1.5 g H2 is needed to react, but 5.0 g is provided. Therefore, H2 is the excess, and N2 is the limiting reactant

1.5 g of H2 is reacted, so 5.0 g - 1.5 g= 3.5 g are leftover

------------------

Step 2

The theoretical yield.

Procedure:

28 g N2 ------ 2 x 17 g NH3

7.0 g N2------ X = 8.5 g NH3

Answer: The theoretical yield of ammonia is 15 g. FALSE

How many grams of water are produced in this reaction# 14

Answers

answer

13. the molar mass of O2 is 32 g/mol

conversion: 2 mols x 16 g/mol = 32 g

14. there are 2 mols of water produced and this equals:

2 mols x 18 g/mol = 36 g

How many moles of KNO3, should be used to prepare 0.70 L of a 0.560 M solution?

Answers

Answer:

0.392 moles of KNO3.

Explanation:

To find the moles of a solute based on the volume and concentration of a solution, we use the following formula:

[tex]Molarity\text{ \lparen M\rparen=}\frac{mole\text{s of solute}}{liter\text{s of solution}}=\frac{mo\text{l }}{L}.[/tex]

The given data is: molarity = 0.560 M and volume (liters of solution) = 0.70 L. So, let's solve for 'moles of solute' and replace the values that we have. The solute in this case, would be KNO3:

[tex]\begin{gathered} mole\text{s of solute=Molarity \lparen M\rparen}\cdot liter\text{s of solution} \\ mole\text{s of KNO}_3\text{=0.560M}\cdot0.70\text{ L = 0.392 moles KNO}_3. \end{gathered}[/tex]

We're going to use 0.392 moles of KNO3 to prepare 0.70 L of a 0.560 M solution.

My work gave me 12.3. Please walk me through how you would approach this problem so I can see where I went wrong.

Answers

In this question, we have HClO4 and KOH being mixed together and then a final pH being calculated, one way of doing this calculation is by finding out how many moles are being equivalent to each other and how many we have left divided by the total volume, so lets work on that:

HClO4 = 0.200 (volume) * 0.180 (concentration) = 0.036 moles

KOH = 0.270 ( concentration) * 0.150 (volume) = 0.0405

Total volume will be = 0.150+0.200 = 0.350 L

Now we can do the next calculation

(0.036 - 0.0405)/0.350

0.0128

This final value will be placed in the pH formula, which is:

pH = -log [H+]

pH = -log [0.0128]

pH = 1.89, letter D

What is the empirical formula of P4O6?

Answers

The empirical formulas refer to the formulas where the ratios are the simplest, while the molecular formula shows the number of each type of atom.

In this case, we have a molecular formula and we just have to simplify the number to get the empirical formula. Divide each number by 2.

[tex]\begin{gathered} \frac{4}{2}=2 \\ \frac{6}{2}=3 \end{gathered}[/tex]

Therefore, the empirical formula is

[tex]P_2O_3[/tex]

A closed container contains a volume V of gas, composed of a mixture of 2 moles of O2 and 3 moles of CO2. The total pressure inside the container is 900 mm Hg. The container is at a temperature of 37⁰C? 1. Calculate PO2 and PCO2, the partial pressures of O2 and CO2 in the gas mixture. 2. Calculate the density of the gas mixture. 3. A quantity of water is introduced into the container, keeping the same quantity of gas, as before, above the water. The container is fitted with a piston, which is positioned so that the gaseous phase occupies a volume V′ and the total pressure of this gaseous phase above the water is maintained at 900 mm Hg. what is the difference between the gaseous phases in the two situations?

Answers

We have a closed container, so the number of moles remains constant.

Now, the total pressure is equal to the sum of the partial pressures. And the partial pressure of a gas will depend on its molar fraction, that is, the moles of the gas over the total moles. So the partial pressure is defined as:

[tex]P_i=\frac{n_i}{n_T}P_T[/tex]

Where,

Pi is the partial pressure of the gas

ni, are the moles of the corresponding gas

nT, are the total moles

Pt is the total pressure.

1. Partial pressures of O2 and CO2

[tex]\begin{gathered} P_{O2}=\frac{2molO_2}{2molO_2+3molCO_2}\times900mmHg \\ P_{O2}=360mmHg \end{gathered}[/tex][tex]\begin{gathered} P_{CO2}=\frac{3molCO_2}{2molO_2+3molCO_2}\times900mmHg \\ P_{CO2}=540mmHg \end{gathered}[/tex]

Answer: PO2=360mmHg

PCO2=540mmHg

2. Now, the density will depend of the number of moles and the volume. We can calculate the volume of the gases with the ideal gas equation that says:

[tex]\begin{gathered} PV=nRT \\ V=\frac{nRT}{P} \end{gathered}[/tex]

For each gas we will have:

O2

PO2=340mmHg=0.45atm

T=37°C=310.15K

R is a constant = 0.08206 (atm.L)/(mol.K)

nO2=2mol

massO2=2mol x MolarMass = 2 mol x 31.998g/mol=63.996g

[tex]V_{O2}=\frac{2mol\times0.08206\frac{atm.L}{mol.K}\times310.15K}{0.45atm}=113.1L[/tex][tex]DensityO_2=\frac{Mass}{Volume}=\frac{63.996g}{113.1L}=0.57g/L[/tex]

CO2

PCO2=540mmHg=0.71atm

T=37°C=310.15K

R is a constant = 0.08206 (atm.L)/(mol.K)

nCO2=3mol

massCO2=3mol x MolarMass = 3 mol x 44.01g/mol=132.03g

[tex]V_{CO2}=\frac{3mol\times0.08206\times\frac{atm}{mol}\times310.15K}{0.71atm}=107.5L[/tex][tex]DensityO_2=\frac{Mass}{Volume}=\frac{132.03g}{107.5L}=1.23g/L[/tex]

Answer:

Density O2=0.57g/L

Density CO2 = 1.23g/L

3. In the second situation, what will happen is that the partial pressure of the gases will decrease, since due to the pressure exerted by the piston, part of the moles of gas will dissolve in the water. So in the gas phase we will have fewer moles of gas.

The question is in the image. If you think the question has an incorrect answer selected, then select the correct answer. Furthermore, if you can try to explain why the answer is correct and/or incorrect, I will also leave attached a text that may help you answer the question.

Answers

Compared to the normal freezing and boiling point of water, adding sugar to water will result in:

D. Lower freezing point and higher boiling point.

The chosen answer is the correct one.

This is explained as follows:

When we add sugar to water we form a solution, water molecules sorroud sugar molecules interacting with them electrostatically, this results in less interaction between water molecules and a lower amount of energy needed for them to maintain their freedom, so they will stay in liquid state at lower temperatures.

On the other hand, when we take the solution to its boiling point we will see that it is higher than that of pure water. This happens because the interaction between water and sugar molecules makes it harder for water molecules to escape the liquid phase, increasing the boiling temperature.

If you have 4.2x10^28 Zn (zinc) atoms, how many moles of zinc do you have?

Answers

We can find the number of moles of a compound based on their number of atoms using Avogadro's number which says that there are 6.022 x 10^(23) atoms in 1 mol.

[tex]4.2\cdot10^{28}atoms\text{ Zn}\cdot\frac{1\text{ mol Zn}}{6.022\cdot10^{23}atoms\text{ Zn}}=69744.27\text{ moles Zn.}[/tex]

The answer is that there are 69744.27 moles of zinc in 4.2 x 10^(28) atoms of zinc.

In the reaction below, what is the limiting reactant when 1.24 moles NH of reacts with 1.79 moles of NO?

Answers

To identify the limiting reactant, we use the coefficients of the reaction:

As you can see, we have 1.79 moles of NO, but we need 1.86 moles of NO according to the reaction. For this reason, NO is the limiting reactant since we need more than what we have.

If the pressure of a gas sample is increases 4x and the absolute temperature remains the same, by what factor does the volume of the sample change?A. 1/4B. 02C. 1/2D. 08

Answers

Answer:

The factor of change is 1/4.

Explanation:

Since in this case we have a constant temperature, the changes in the pressure will affect the volume like the Boyle's Law formula explains:

[tex]\begin{gathered} P_1*V_1=P_2*V_2 \\ \end{gathered}[/tex]

To find the change of the sample volume, let's replace the initial pressure (P1) with A, and let's increase the pressure (P2) 4x:

[tex]\begin{gathered} P_1*V_1=P_2*V_2 \\ A*V_1=(A*4)*V_2 \\ \frac{A*V_1}{A*4}=V_2 \\ \frac{1}{4}V_1=V_2 \end{gathered}[/tex]

So, the factor of change is 1/4.

What mass of oxygen will be produced from the decomposition of 25.5g of potassium chlorate?

Answers

Answer

9.987 grams of O2

Explanation

Given:

Mass of potassium chlorate that decomposed = 25.5 g

What to find:

The mass of oxygen produced.

Solution:

The first step is to write the balanced chemical equation for the reaction.

2KClO₃ → 2KCl + 3O₂

From the equation; 2 moles of KClO₃ produced 3 moles of O₂

1 mole KClO₃ = 122.55 g/mol and 1 mole O₂ = 31.998 g/mol

This implies (2 mol x 122.55 g/mol) = 245.1 g of KClO₃ produced (3 mol x 31.998 g/mol) = 95.994 g of O₂

Therefore, 25.5 g of KClO₃ will produce

[tex]\frac{25.5\text{ }g\text{ }KClO_3}{245.1\text{ }g\text{ }KClO_3}\times95.994\text{ }g\text{ }O_2=9.987\text{ }g\text{ }O_2[/tex]

Therefore, the mass of oxygen produced is 9.987 grams

Consider the density data in
the table at right.
Trial #
1
The sample is thought to be
silver, density = 10.49 g/cm³.
What is the range of the data? Average
2
3
Density
(g/cm³)
10.34
10.58
10.62
10.51

Answers

10.51 (g/cm³) is the Average Density of the given data.

Average Density = 10.34+10.58+10.62+10.51÷4

Average Density=42.05/4

Average Density=10.51

Density is defined as a material substance's mass per unit volume. Density is described by the equation d = M/V, where d stands for density, M for mass, and V for volume. Grams per cubic centimeter is the unit of measurement for density.

For instance, compared to Earth's density of 5.51 grams, water has a density of 1 grams per cubic centimeter. Another way to express density is in kilograms per cubic meter (in meter-kilogram-second or SI units)

It is easy to determine the relationship between mass and volume using density. For instance, the formula for determining a body's mass is M = Vd, while the formula for determining a body's volume is V = M/d.

To know more about  density visit : https://brainly.com/question/2876257

#SPJ1

How many moles are there in 5.0grams of calcium bromide?

Answers

ANSWER

EXPLANATION

Given information

The mass of calcium bromide is 5.0 grams

Follow the steps below to find the mole of calcium bromide

Step1: Write the formula for calculating mole

[tex]\text{ Mole = }\frac{mass}{molar\text{ mass}}[/tex]

Recall, that the molar mass of calcium bromide is 199.89 g/mol

Step 2: Substitute the given data into the formula in step 1

[tex]undefined[/tex]

convert 12 liters to barrels

Answers

Answer:

12 liters is equal to 0.075 barrels.

Explanation:

To convert liters into barrels, it is necessary to use the following conversions:

- 1 barrel = 42 gallons

- 1 liter = 0.264 gallons

We have to write each conversion as a quotient:

[tex]12L*\frac{0.264gallons}{1L}*\frac{1barrel}{42gallons}=0.075barrels[/tex]

We must write each conversion in a way that the liters cancel out, then the gallons cancel out in order to obtain the result in barrels.

So, 12 liters is equal to 0.075 barrels.

Which of the following chemical equations violates the law of conservation of mass?

Answers

The law of conservation of mass states that mass is not created nor destroyed, it is just transforms.

A chemical reaction satisfies this law if the same amount of each element is present in both sides of the equation.

By looking at the choices, it can be observed that in the third choices, 1 sulfate ion is reacting and 2 sulfate ions are being produced. This violates the law of conservation of mass because if 1 sulfate ion reacts, 1 sulfate ion must be produced.

It means that the correct answer is the third choice.

what is the electron configuration of Ni2+? How many valence electrons does this ion have?

Answers

Nickel has 28 electrons, its electron configuration is:

[tex]1s^22s^22p^63s^23p^64s^23d^8[/tex]

Ni2+ has lost 2 electrons, which means that the resulting configuration would be:

[tex]1s^22s^22p^63s^23p^64s^23d^6[/tex]

Nevertheless, since 4s electrons are further from the nucleus, they are lost resulting in a more stable ion, then, the actual configuration of Ni2+ is:

[tex]1s^22s^22p^63s^23p^63d^8[/tex]

It means that this ion has 16 valence electrons.

After swimming in the pool on a very hot day, Sarah had a glass of ice water. Over time, the water on her skin evaporated, and the ice cubes melted in the glass. Howmany states of water existed in this scenario?A. 3B. 1C. 4D. 2

Answers

Answer:

3 states

Explanations:

Matter can exist in three forms namely;

• Solid state

,

• Liquid state

,

• Gaseous state

From the given scenario, water is known to exist as ice cubes (which is the solid state). Also since the water Aon her skin evaporated the water changed to steam (gaseous state) in this case.

Also note that the ice cubes melted in the glass. This melted ice changes to liquid ,at this point. Therefore, we can conclude that the water in the scenario exists in three forms (Liquid, Solid and Gas).

In a storage area of a hospital where the temperature has reached 55 °C, the pressure of oxygen gas in a 15.0-L steel cylinder is 965 Torr.What is the final pressure, in millimeters of mercury, when the temperature of the oxygen gas drops to 24 °C, and the volume and the amount of the gas do not change?

Answers

Answer:

[tex]873.80\text{ mmHg}[/tex]

Explanation:

Here, we want to get the final pressure

From the pressure law, volume and temperature are directly proportinal

Mathematically:

[tex]\frac{P_1}{T_1}\text{ = }\frac{P_2}{T_2}[/tex]

Where:

P1 is the initial pressure which is 965 torr

P2 is ?

T1 is the initial temperature which we convert to Kelvin by adding 273 K(55 + 273 = 328 k

T2 is the final temperature which is 24 + 273 = 297 K

Substituting the values, we have it that:

[tex]\begin{gathered} \frac{965}{328}\text{ = }\frac{P_2}{297} \\ \\ P_2\text{ = }\frac{297\times965}{328}\text{ = 873.80 torr} \end{gathered}[/tex]

Now, we convert this to mmHg

Mathematically, 1 torr = 1 mmHg

We have the final pressure as 873.80 mmHg

use the elements of the periodic table to help you identify the number of valence for each of these elements 1,2,3,4,5,6,7, or 8carbon (C) 1Chlorine (Cl) 2Neon (Ne) 3Calcium (Ca) 4Oxygen (O) 5 6 7 8

Answers

Answer:

Explanation:

Here, we want to get the valence electron number for each of the listed elements

The number of valence electrons is used to put elements into groups

Thus, an element will have 1 valence electron if it belongs to group 1

Now, let us get the valence electrons for each of the listed elements

Carbon C has 6 valence electrons

Chlorine Cl has 7 valence electrons

Neon Ne has 8 valence electrons

Calcium Ca has 2 valence electrons

Oxygen O has 6 valence electrons

Kindly note that we do not count the d-block when checking for the number of valence electrons. After the second group, we skip the next 10 (the transition metals) and count the next group, starting from Boron as 3, in that sequence

calculate the percent of chlorine in sodium chloride

Answers

The molar mass of sodium chloride is 58.44 g/mol.

The molar mass of chlorine is 35.45 g/mol.

To find the percent, divide the molar masses.

[tex]\frac{35.45}{58.44}\approx0.61\times100\%=61\%[/tex]

Therefore, the percent of chlorine is 61%.

Which uses energy directly from the sun to produce electricity?A.Biomass powerB.Coal powerC.Solar powerD.Nuclear power

Answers

Explanation:

In solar power we use the radiation from the sun to produce electricity.

Answer: C. Solar power

The energy source that uses energy directly from the sun to produce electricity is solar power. The correct answer is option C.

Energy refers to the capacity or ability to do work or cause change. It is a scalar quantity that can be transferred or converted from one form to another, but it cannot be created or destroyed.

Solar power is generated by converting sunlight into electrical energy using solar panels or photovoltaic cells. These cells are made up of layers of silicon that absorb sunlight and convert it into an electrical current.

The energy produced by solar power is clean, renewable, and does not produce any harmful emissions or waste products.

In conclusion, solar power is the energy source that uses energy directly from the sun to produce electricity. Option C is the correct answer.

Learn more about energy here:

https://brainly.com/question/1932868

#SPJ6

Determine the mass in grams of 3.06x10^21 atoms of arsenic.

Answers

To determine the mass of the number of atoms, the first step is to convert this number of atoms to moles using Avogadro's number:

[tex]3.06\times10^{21}atoms\cdot\frac{1molAs}{6.022\times10^{22}atoms}=0.051molAs[/tex]

Convert this amount of moles to grams using the molecular weight of Arsenic:

[tex]0.051molAs\cdot\frac{74.9g}{1molAs}=3.8199g[/tex]

It means that the answer is 3.8199g.

Determine the percentage by mass of each element in the following compounds. (Round your answers to one decimal place.)(a)ammonia, NH3N:____%H:_____%(b)washing soda, Na2CO3Na:____%C:_____%O:_____%

Answers

To determine the mass percentage of each element in the compounds, we are going to use the following formula:

[tex]\%\text{ m/m = }\frac{mass\text{ of the element}}{mass\text{ of the compound}}*100[/tex]

In the case of the last element of each compound, we are going to make the subtraction of 100% minus the addition of the other elements.

We are going to assume that we have 1 mole of every substance.

First, we have to determine the molecular weight of each substance:

a. NH3

[tex]M.W\text{ NH}_3\text{ = 14+1*3 = 17 g/mol}[/tex]

If we have 1 mole of ammonia, then we have 17 g. Then, we can calculate the nitrogen mass percentage as follows:

[tex]\%\text{ m/m N = }\frac{14\text{ g }}{17\text{ g}}\text{ *100}=\text{ 82.4}\%\text{ }[/tex]

Then, we make the subtraction to determine the hydrogen percentage:

[tex]\%m/m\text{ H = 100-82.4 = 17.6\%}[/tex]

Then, the answer is that the nitrogen mass percentage equals 82.4% and the hydrogen one is 17.6%

b. Na2CO3

We repeat the same steps that we did with the ammonia.

[tex]M.W\text{ Na}_2CO_3\text{ = 23*2+12+16*3= 106 g/mol }[/tex]

[tex]\%\text{ m/m Na = }\frac{46\text{ g }}{106\text{ g}}*100=\text{ 43.4 \%}[/tex][tex]\%\text{ m/m C = }\frac{12\text{ g}}{106\text{ g }}*100\text{ = 11.3\%}[/tex][tex]\%m/m\text{ O= 100-\lparen11.3+43.4\rparen=45.3\%}[/tex]

Then, the answer is that the sodium mass percentage equals 43.4%, the carbon is 11.3%, and the oxygen one is 45.3%

I have attached an image with all of the information.

Answers

Explanation:

For reactants: BE 2CH2OH = 2*(3*414+351+460) = 4106kJ/mol

: BE 3O2 = 3*499 = 1497kJ/mol

For products: BE 2CO2 = 2*799 = 1598kJ/mol

: BE 4H2O = 4*2*460 = 3680kJ/mol

[tex]\begin{gathered} BE\text{ = Sum}_{reactants}\text{ - Sum}_{products} \\ \\ \text{ = 4106+1497-\lparen1598+3680\rparen} \\ \\ \text{ = 325kJ/mol} \end{gathered}[/tex]

Answer:

Bond energy is 325kJ/mol

Fill in the blank: Elements found in in the same vertical columns (Group 1A, 2A, etc) will share common properties. In the periodic table, the vertical columns of elements are called groups, or_________.

Answers

Answer

Elements found in in the same vertical columns (Group 1A, 2A, etc) will share common properties. In the periodic table, the vertical columns of elements are called groups, or families.

Explanation

The vertical columns on the periodic table are called groups or families because of their similar chemical behavior. All the members of a family of elements have the same number of valence electrons and similar chemical properties. The horizontal rows on the periodic table are called periods.

Hence, elements found in in the same vertical columns (Group 1A, 2A, etc) will share common properties. In the periodic table, the vertical columns of elements are called groups, or families.

An objects heat capacity depends on which of the following?

___ Mass (quantity) of the object

___ Shape

___ Magnitude of the temperature change

___ Composition

Answers

the correct answer is the first option, mass

How much heat energy would be needed to raise the temperature of a 15.0 g sample of iron [Specific Heat = 0.448 J/(g°C)] from 22.0°C to 100.0°C?1. 524J2. 11J3. 249J4. 8495. 201J

Answers

Answer:

[tex]524\text{ J}[/tex]

Explanation:

Here, we want to get the amount of heat energy needed

Mathematically:

[tex]Q\text{ = mc}\Delta T[/tex]

where:

Q is the amount of energy that we want to calculate

m is the mass of the iron sample which is 15 g

c is the specific heat capacity which is 0.448 J/g°C

ΔT is the change in temperature which is (100-22) = 78°C

Substituting the values, we have it as:

[tex]Q\text{ = 15 }\times\text{ 0.448 }\times\text{ 78 = 524.16 J}[/tex]

Volume vs temp. Please help me find the final answer!

Answers

Given that the pressure in the whole process is constant, we could use the Charles's law:

[tex]\frac{V_1}{T_1}=\frac{V_2}{T_2}[/tex]

Let's replace our values and solve the equation for T2:

[tex]\frac{623mL}{137C}=\frac{914mL}{T_2}\to T_2=\frac{137C\cdot914mL}{623mL}=201C[/tex]

The temperature of the gas sample will be 201°C.

The phase diagram of a substance is given below. This substance is a __ at 10 °C and 1 atm.

Answers

The phase diagram of a substance is given below. This substance is a solid  at 10 °C and 1 atm.

When a material switches from one state of matter to another, a phase transition takes place. Matter exists in three basic states: liquid, solid, and gas. The many phases of a material are shown on a phase diagram using numerous variables, most frequently temperature and pressure. The figure may be used to illustrate how altering these factors impacts a substance's state of matter.

The fusion (melting or freezing) curve, which depicts the change from a liquid to a solid state. The curve that depicts the change from a gaseous to a liquid state is called the vaporization (or condensation) curve. The sublimation (or deposition) curve depicts the change from a gaseous to a solid state.

To know more about   phase diagram visit : brainly.com/question/14718830

#SPJ1

Other Questions
What is 57.629 in expanded form? If m Angle EOF=26 and m Angle FOG=38, then what is the measure of Angle EOG? The diagram is not to scale. In this example, the system gains the ability to cause change the higher the brick is raised above the earth. Is this true or false? what are two ways that you can present 27 using 3 Is the expression below quadratic?3x + 5y - 2A. TrueB.False Hello! Please check the image attached to see the question! Name the type of angle relationship. If no relationship exists, write "none. a. boredomplease help meeee Which interva notation represents the set of all numbers greater than or equal to -11 and less than or equal to -2? O [-11, -2] O (-11, -2] Submit Answer Of-11, -2) 0 (-11, -2) PLS HELP THIS IS DUE TOMORROW ITS RATIONAL NUMBERS AND I NEED A EXPLANATION ON HOW TO DO IT PLS HELP Discuss why do wages differ across occupations? i need help woth this asap i cant get it wrong The Elimination MethodTry These BSolve each system using elimination.a. 7x+5y=-14x - y=-16 Creating compelling visuals for presentations requires people to learn what new tools? Question 1 options: A gaming software B language translation software C design software D audio recording software Which linear function has the greater rate of change, the one described by the equation y = 3x + 4 or the one described by the table? 1 WN X 3 10 17 24 4 Choose the correct answer below. O A. The function for the table has the greater rate of change. OB. The function y = 3x + 4 has the greater rate of change.Table:x y1 32 103 174 24 Find square root of 49 Find square root of 100 If raindrops are falling vertically at 7.90 m/s, what angle from the vertical do they make for a person jogging at 2.47 m/s? (Enter your answer in degrees.) if angle 4 equals 140 what do the other angles equal to. A mass falls from rest to the growl in 15 secs. Find y, the vertical distance it travelled The way in which the hidden text boxes must appear in Microsoft Word to keep information private is: B. Both Hidden text and Print hidden text are unchecked.Microsoft Word can be defined as a word-processing software application that is designed and developed by Microsoft Inc., in order to enable its users type, format, and save text-based documents.In Microsoft Word, one of the feature that was introduced to enhance security by preventing an unauthorized access to private (sensitive) information saved on a personal computer (PC) is the option of hiding texts. Once a text is hidden, it becomes private and as such cannot be viewed or seen by other users.However, you must uncheck the Hidden text and Print hidden text in the display dialog box of Microsoft Word to keep information private.