Determine the mass of an object when the period of oscillation is 11 s and spring constant is 10 N/m.

Answers

Answer 1

Answer:

30.65 Kg.

Explanation:

The period of oscillation T, the spring constant k, and the mass m are related by the following equation.

[tex]T=2\pi\sqrt[]{\frac{m}{k}}[/tex]

So, solving for m, we get:

[tex]\begin{gathered} \frac{T}{2\pi}=\sqrt[]{\frac{m}{k}} \\ \frac{T^2}{4\pi^2}=\frac{m}{k} \\ \frac{T^2k}{4\pi^2}=m \\ m=\frac{T^2k}{4\pi^2} \end{gathered}[/tex]

Therefore, replacing T = 11 s and k = 10 N/m, we get:

[tex]m=\frac{(11s)^2(10\text{ N/m)}}{4\pi^2}=30.65\text{ kg}[/tex]

Then, the mass of the object is 30.65 Kg.


Related Questions

A standing wave is produced by reflecting a wave off a wall (which acts like a fixed end). If the standing wave consists of 6 anti-nodes and 7 nodes and the wall is 12m away from the source determine the wavelength.

Answers

Answer:

4 m

Explanation:

We can represent the standing wave as follows

So, we can divide the total distance into 6 parts as follows

12 m/6 = 2 m

Then, 2 m is the distance from node to node. It means that the wavelength will be twice this distance, so

wavelength = 2 x 2m = 4m

Therefore, the wavelength is 4m

A scenario where two people are sitting on a see saw is modeled here. Assuming both people are at equal distances from the pivot point, which statements below would result in the unbalanced forces shown above? Select ALL that apply.A)Person A has a force of 70 N and person B has a force of 80 N.B)Person A has a force of 80 N and person B has a force of 70 N.C)Person A has a force of 75 N and person B has a force of 75 N.D)Person A has a force of 50 N and person B has a force of 40 N.E)Person A has a force of 50 N and person B has a force of 70 N.

Answers

[tex]\begin{gathered} \text{From the pic, the person A must have more force than person B, hence} \\ \text{Stataments true:} \\ B)\text{ Person A has a force of 80N and person B has a force of 70N} \\ D)\text{Person A has a force of 50N and person B has a force of 40N} \end{gathered}[/tex]

Yea I think and this the other day and

Answers

Given:

The radius of the tank is: R = 7.5 feet.

Volume rate is: dV/dt = 60 cubic feet per hour.

h = 2.8 feet.

To find:

V, R, h, dV/dt, dR/dt, dh/dt

Explanation:

The given expression for volume is:

[tex]V=\pi h^2(R-\frac{1}{3}h)[/tex]

Substituting the values in the above equation, we get:

[tex]V=3.14\times2.8^2\times(7.5-\frac{1}{3}\times2.8)=161.74\text{ cubic feet}[/tex]

The volume is 161.74 cubic feet.

The radius of the tank is given as: R = 7.5 feet

The height of the water in the tank is given as: h = 2.8 feet

The volume rate of water is given as: dV/dt = 60 cubic feet per hour

As the radius of the tank is constant, its derivative will be zero. Thus, dR/dt = 0.

dh/dt can be calculated by differentiating the given volume equation with respect to time as:

[tex]\begin{gathered} \frac{dV}{dt}=\pi^2\times\frac{dh^2}{dt}\times(R-\frac{1}{3}\frac{dh}{dt}) \\ \\ \frac{dV}{dt}=\pi^2\times\frac{2dh}{dt}\times(R-\frac{1}{3}\frac{dh}{dt}) \\ \\ \frac{dV}{dt}=2\pi^2R\times\frac{dh}{dt}-\frac{2\pi^2}{3}\times(\frac{dh}{dt})^2 \end{gathered}[/tex]

Substituting the values in the above equation, we get:

[tex]\begin{gathered} 60=2\pi^2\times7.5\times\frac{dh}{dt}-\frac{2\pi^2}{3}\times(\frac{dh}{dt})^2 \\ \\ 60=148.044\frac{dh}{dt}-6.580(\frac{dh}{dt})^2 \\ \\ 6.580(\frac{dh}{dt})^2-148.044\frac{dh}{dt}+60=0 \end{gathered}[/tex]

Solving the above quadratic equation, we get:

dh/dt = 0.412 ft/hr or dh/dt = 22.086 ft/hr.

Final answer:

V = 161.74 cubic feet

R = 7.5 feet

h = 2.5 feet

dV/dt = 60 cubic feet per hour

dR/dt = 0

dh/dt = 22.086 ft/hr or 0.412 ft/hr

A ship's wheel has a moment of inertia of 0.930 kilogram·meters squared. The inner radius of the ring is 26 centimeters, and the outer radius of the ring is 32 centimeters. Disagreeing over which way to go, the captain and the helmsman try to turn the wheel in opposite directions. The captain applies a force of 314 newtons at the inner radius, while the helmsman applies a force of 290 newtons at the outer radius. What is the magnitude of the angular acceleration of the wheel?

Answers

We can use the formula of the moment of inertia given by:

[tex]r\cdot F=I\alpha[/tex]

Where:

r = Distance from the point about which the torque is being measured to the point where the force is applied

F = Force

I = Moment of inertia

α = Angular acceleration

So:

[tex]\begin{gathered} r\cdot F=(-0.26\times314+290\times0.32)=92.8-81.64=11.16 \\ I=0.930 \\ so,_{\text{ }}solve_{\text{ }}for_{\text{ }}\alpha: \\ \alpha=\frac{r\cdot F}{I} \\ \alpha=\frac{11.16}{0.930} \\ \alpha=\frac{12rad}{s^2} \end{gathered}[/tex]

Answer:

12 rad/s²

Question one I need an explanation Pls. Only part a and b.

Answers

Given,

The velocity of the objects, v₁=50.0 m/s and v₂=-25.0 m/s

The initial positions of the objects, x₁_₀=0.00 m and x₂_₀=500 m

The relative velocity of the objects is given by,

[tex]v=v_1-v_2[/tex]

On substituting the known values,

[tex]\begin{gathered} v=50.0-(-25.0) \\ =75.0\text{ m/s} \end{gathered}[/tex]

The total distance between the objects is,

[tex]\begin{gathered} d=x_{10}+x_{20} \\ =0+500 \\ =500\text{ m} \end{gathered}[/tex]

(a)

As the two objects are traveling towards each other in a straight line, they will intercept.

The time it takes for the objects to intercept is given by,

[tex]t=\frac{d}{v}[/tex]

On substituting the know values,

[tex]\begin{gathered} t=\frac{500}{75} \\ =6.67\text{ s} \end{gathered}[/tex]

As t is the time it takes for the objects to intercept, the distance covered by the objects in this time will give us the position x_f where these two objects intercept.

As object 1 starts from the origin, the distance traveled by this object is equal to x_f

The distance traveled by object 1 in that time is,

[tex]x_f=d_1=v_1t[/tex]

On substituting the known values,

[tex]\begin{gathered} x_f_{}=50\times6.67 \\ =333.5m\text{ } \end{gathered}[/tex]

Thus the objects will intercept at the point x_f=333.5 m from the origin.

(b)

As calculated in part a, the time it takes for the objects to intercept is t=6.67 s

Tsunami waves flood coastal and inland areas and affect coastal life. Which of these properties of tsunami waves most contributes to the flooding? The low friction of waves at the shoreline The high friction of waves at the shoreline The high amplitude of the waves at origination The huge volume of water that surges across shore

Answers

Take into account that the flooding produced by Tsunami waves has a great level of energy.

Moreover, consider that the amplitude of the waves determines the energy of the waves and then, the flooding is produced primarily by the high amplitude of the waves at origination.

Calculate the total capacitance of the three capacitors 30µF, 20µF & 12µF connected in series across a d.c. supply

Answers

Consider that three capacitors connected in series have the following total capacitance:

[tex]\frac{1}{C}=\frac{1}{C_1}+\frac{1}{C_2}+\frac{1}{C_3}[/tex]

where,

C1 = 30µF

C2 = 20µF

C3 = 12µF

Consider that the LCM of the three previous numbers is 60 (to sum the fractions).

Replace the previous values of the parameters into the formula for C and simplify:

[tex]\begin{gathered} \frac{1}{C}=\frac{1}{30}+\frac{1}{20}+\frac{1}{12} \\ \frac{1}{C}=\frac{2+3+5}{60}=\frac{10}{60}=\frac{1}{6} \\ C=6 \end{gathered}[/tex]

Hence, the total capacitance is 6µF

1)A weight lifter raises a 180 kg barbell to a height of 1.95 m. What is the increase in the potential energy of the barbell? 2)A 20.0 kg rock is on the edge of a 100 m cliff. What is the velocity of the rock just before it hits the grounds when it is pushed off the cliff?

Answers

Question 1.

Given:

Mass of barbell = 180 kg

Height = 1.95 m

Let's find the increase in the potential energy of the barbell.

To find the potential energy, apply the formula:

PE = mgh

Where:

m is the mass = 180 kg

g is acceleration due to gravity = 9.8 m/s²

h is the height = 1.95 m

Input values into the formula and solve:

PE = 180 x 9.8 x 1.95 = 3439.8 J

Therefore, the increase in the potential energy of the barbell is 3439.8 J

ANSWER:

3439.8 J

what is this math problem Solve for x.

0.5x = 4.5

Answers

x = 9

if you format it as a fraction, it’s easier to solve.

1/2 * x = 9/2
divide both sides by 1/2

x = 9/2 * 2/1
x = 9
Answer: x = 9

Explanation: 0.5x = 4.5

Divide both sides: 4.5/0.5

Multiply numerator and denominator: x = 45/5

Cross out common factor: x = 9

An object is placed 3.00 cm in front of a concave lens with a focal length of 5.00 cm. Find the image distance.

Answers

ANSWER:

-1.88 cm

STEP-BY-STEP EXPLANATION:

The situation would be the following:

Given:

Object distance (u): -3 cm

Focal distance (f): -5 cm

Using the lens formula, we calculate the distance of the image:

[tex]\begin{gathered} \frac{1}{v}-\frac{1}{u}=\frac{1}{f} \\ \\ \text{We replacing} \\ \\ \frac{1}{v}-\frac{1}{-3}=\frac{1}{-5} \\ \\ \frac{1}{v}\cdot \:15v-\frac{1}{-3}\cdot \:15v=\frac{1}{-5}\cdot \:15v \\ \\ 15+5v=-3v \\ \\ 5v=-3v-15 \\ \\ 8v=-15 \\ \\ v=-\frac{15}{8} \\ \\ v=-1.88\text{ cm} \end{gathered}[/tex]

The image distance is -1.88 cm

Answer:

Explanation:

yfdyrdrd

Two billiard balls collide elastically ball A has a mass of 1.22 kg and an initial velocity of 0.8 M/S Ball B has a mass of 1.37 KG and an initial velocity of 0 M/S assuming that all of ball A’s is momentum is transferred to ball B after the collision what is the final velocity of Ball B ? *a perfect momentum transfer means that what was moving before the collision will not move after the collision and vice versa.A) 0.377 m/sB) 0.976 m/sC) 0.712 m/sD) 0 m/s

Answers

We will have the following:

[tex]\begin{gathered} (1.22kg)(0.8m/s)+(1.37kg)(0m/s)=(1.22kg)(0m/s)+(1.37kg)v_f \\ \\ \Rightarrow0.976kg\ast m/s=1.37kg\ast v_f\Rightarrow v_f=\frac{0.976kg\ast m/s}{1.37kg} \\ \\ \Rightarrow v_f=\frac{488}{685}m/s\Rightarrow v_f\approx0.712m/s \end{gathered}[/tex]

So, the final velocity will be approximately 0.712 m/s.

A crate is at rest on an inclined plane. As the slope increases the crate remains at rest until the incline reaches an angle of 32.7° from the horizontal. At this angle the crate begins to slidedown the ramp.Apply Newton's 1st or 2nd law to each axis of the Free body diagram.

Answers

The free body diagram of the crate can be shown as,

According to free body diagram, the net force acting on the crate is,

[tex]F=mg\sin \theta-f\ldots\ldots\text{ (1)}[/tex]

The frictional force acting on the crate can be given as,

[tex]f=\mu N[/tex]

According to free body diagram, the normal force acting on the crate is,

[tex]N=mg\cos \theta[/tex]

Therefore, the frictional force becomes,

[tex]f=\mu mg\cos \theta[/tex]

According to Newton's second law, the net force acting on the crate is,

[tex]F=ma[/tex]

Therefore, equation (1) becomes,

[tex]\begin{gathered} ma=mg\sin \theta-\mu mg\cos \theta \\ a=g\sin \theta-\mu g\cos \theta \end{gathered}[/tex]

Thus, the net acceleration of the crate can be expressed using Newton's second law as,

[tex]a=g\sin \theta-\mu\cos \theta[/tex]

What is the net force on a 4.12kg dog that accelerates at 3.02 m/s^2

Answers

Answer: Net force = 12.4 N

Explanation:

We would apply the formula which is expressed as

Net force = mass x acceleration

From the information given,

mass = 4.12

acceleration = 3.02

Net force = 4.12 x 3.02

Net force = 12.4 N

At what speed must a satellite be travelling so that it shall remain in a circular orbit 1683049 m above the surface of the Earth. Take the mass of the Earth as 6.0 × 1024 kg

Answers

Given data

*The given mass of the Earth is M_e = 6.0 × 10^24 kg

*The distance above the surface of the Earth is r = 1683049 m

The formula for the speed of the satellite must be traveling so that it shall remain in a circular orbit is given as

[tex]v=\sqrt[]{\frac{GM_e}{r}}[/tex]

Substitute the known values in the above expression as

[tex]\begin{gathered} v=\sqrt[]{\frac{(6.67\times10^{-11})(6.0\times10^{24})}{(1683049)}} \\ =1.54\times10^4\text{ m/s} \end{gathered}[/tex]

Hence, the speed of the satellite must be traveling so that it shall remain in a circular orbit is v = 1.54 × 10^4 m/s

If it takes 0.8 s for your voice to be heard at a distance of 272 m, what is the temperature of the air?

Answers

V = 331 + 0.59 Tc

v= d/t = 272 / 0.8 = 340 m/s

340 = 331 + 0.59 Tc

340 - 331 = 0.59 TC

9 = 0.59 Tc

9/0.59 = Tc

Tc = 15.25°C

A cord is wrapped around the rim of a wheel 0.230 m in radius, and a steady pull of 37.0 N is exerted on the cord. The wheel is mounted on frictionless bearings on a horizontal shaft through its center. The moment of inertia of the wheel about this shaft is 4.60 kg⋅m2.

Answers

The angular acceleration of the wheel is 1.85m/s²

Acceleration is the rate at which speed and direction of velocity vary over time. Something is said to be accelerating when it starts to move faster or slower.

We are given that,

The pull force of the wheel = τ = 37.0N

The radius of the wheel = r = 0.230m

The moment of inertia = I = 4.60kg-m²

Here the angular acceleration = α = ?

The formula for angular acceleration can be given as,

α = τ /I

α = [(37.0N)×( 0.230m)]/4.60kg-m²

α = 1.85 m/s²

Hence , the angular acceleration of the wheel would be 1.85m/s²

To know more about acceleration

https://brainly.com/question/13925550

#SPJ1

How would you go about answering this question?

Answers

The new angular velocity becomes  0.286 rev/s.

Given parameters:

Mass of the marry go round: M = 120 kg.

Radius of the marry go round: r = 1.80 m.

Mass of the boy: m = 27 kg.

Initial angular velocity of the marry go round: ω₁ = 0.350 rev/s.

Final angular velocity of the marry go round: ω₂ = ?

From the principle of conservation of angular momentum;

Initial angular momentum = final angular momentum

⇒ 1/2 Mr²ω₁ = 1/2( M+m)r²ω₂

⇒ ω₂ = Mω₁/(m+M)

= 120×0.35/(120+27) rev/s

= 0.286 rev/s.

So, final angular velocity of the marry go round: ω₂ = 0.286 rev/s.

Learn more about angular velocity here:

https://brainly.com/question/12446100

#SPJ1

_7. What happens to the total resistance of the resistors if they are connected inparallel? A. increases C. decreases B. remains the same D. increases then decreases

Answers

In order to find what happens to the total resistance when resistors are connected in parallel, let's analyze the formula below for the total resistance between two resistors in parallel:

[tex]\begin{gathered} \frac{1}{RT}=\frac{1}{R_1}+\frac{1}{R_2}\\ \\ RT=\frac{R_1R_2}{R_1+R_2} \end{gathered}[/tex]

When two resistors are in parallel, they have the same voltage.

That means more current will flow, because there will be current flowing from each resistor and the voltage is the same.

Calculating the total resistance, we will find a smaller resistance than the two resistors used, because with the same voltage, the current is greater.

Therefore the correct option is C.

A ray of light is traveling through a mineral sample is submerged inwater. The ray refracts as it enters the water, as shown in the diagrambelow.NormalWater41°149°63°27°MineralCalculate the absolute index of refraction of the mineral.

Answers

We are asked to determine the absolute index of refraction of a mineral submerged in water. To do that we will use Snell's law:

[tex]n_1\sin \theta_1=n_2\sin \theta_2[/tex]

Where n1 and n2 are the refraction indices of water and mineral respectively and the angles "theta 1" and "theta 2" are the incidence and refraction angles. We will solve for n1:

[tex]n_1=\frac{n_2\sin \theta_2}{\sin \theta_1}[/tex]

Replacing the values:

[tex]n_1=\frac{(589.29nm)\sin 41}{\sin 27}[/tex]

Solving the operations:

[tex]n_1=851.58nm[/tex]

Therefore, the index of refraction of the mineral is 851.58 nm.

A ball is moving at 4 m/s and has momentum 48 kg.m/s. What is the ball's mass (in kilograms)?

Answers

Given:

The speed of the ball is v = 4 m/s

The momentum of the ball is p = 48 kg m/s

Required: The mass of the ball

Explanation:

The mass of the ball can be calculated as

[tex]\begin{gathered} p=mv \\ m=\frac{p}{v} \\ m=\frac{48\text{ kg m/s}}{4\text{ m/s}} \\ =12\text{ kg} \end{gathered}[/tex]

Final Answer: The mass of the ball is 12 kg.

How much time is required for a car engine to do 278 kJ of work, if its maximum power is 95 kW?

Answers

W= work = 278 kj

P = Power = 95 Kw

t= time

P = W / t

Isolate t

t = W /P

Replacing:

t= 278kj / 95Kw = 2.93 seconds

It is required 2.93 seconds

A 6 kg sign is suspended by two strings making angles with the ceiling as shown in the diagram. Determine the magnitudes of the tensions in each string. Remember that 1kg exerts a force of 9.8 N. please use sine/cosine law for this question

Answers

The triangle representing the given scenario is shown below

T1 and dT2 represents the tension in each spring

We would apply the sine rule which is expressed as

a/SinA = b/SinB = c/SinC

where

A, B and C are the angles of the triangle

a, b and c are the sides opposite the respective angles

Thus,

A = 42

a = T1

B = 23

b = T2

C = 115

c = 58.8

T1/sin42 = 58.8/sin115

By cross multiplying, it becomes

T1sin115 = 58.8sin42

T1 = 58.8sin42/sin115

T1 = 43.41

T2/sin23 = 58.8/sin115

By cross multiplying, it becomes

T2sin115 = 58.8sin23

T2 = 58.8sin23/sin 115

T2 = 25.35

The magnitude of the tension in each string are 43.41 N and 25.35 N

Equations of linear motion

Answers

The Newton's equations of motion are stated below

v = u + at

s = ut 1/2at^2

v^2 = u^2 + 2as

s = 1/2(u + v)t

where

u represents initial velocity

v represents final velocity

t represents time

a represents acceleration

You have a coin sitting on
a card on top of a glass. You want to put the
coin into the glass, but you are not allowed
to pick up the card. Think of how you can do
that. Then write a short explanation of why
it works that would make sense to someone
who doesn't remember Newton's laws of
motion.

Answers

Answer:

You can flick the car to the side so that the coin can fall through.

Explanation:

I need full explanation on how to solve both these questions I don't understand haha

Answers

Given that weight of 1 kg is equivalent to the weight of 2.2 lb.

The weight of one kg or 2.2 lbF is 9.8 N

(a)

The weight of 2.2 lbF is 9.8 N

Thus the force of 1.0 lbF is,

[tex]\begin{gathered} 1.0\text{ lbF}=\frac{1.0\text{ lbF}\times9.8\text{ N}}{2.2\text{ lbF}} \\ =4.45\text{ N} \end{gathered}[/tex]

Thus the force of the weight of 1.0 lbF is 9.8 N

(b)

If the thrusters are meant to use the value in N but used it in lbF, then the trusters would have used, say, 9.8 lbF in place of 9.8 N.

The force of 9.8 lbF is greater than the force of 9.8 N. Thus the force applied to slow the craft is higher than intended.

Thus they would slow the craft more.

(c)

Yes, the failure is correctly explained by the unit mix-up. As it is explained in part b, the force applied will be higher than intended. Which is exactly the case.

Thus the failure is correctly explained by the mix-up.

You have a light spring which obeys Hooke's law. This spring stretches 3.02 cm vertically when a 2.50 kg object is suspended from it. Determine the following.(a) the force constant of the spring (in N/m)N/m(b) the distance (in cm) the spring stretches if you replace the 2.50 kg object with a 1.25 kg objectcm(c) the amount of work (in J) an external agent must do to stretch the spring 8.90 cm from its from unstretched positionJ

Answers

We are given that a spring stretches 3.02 cm vertically when a 2.5 kg object is suspended.

Part (a) To determine the constant of the spring we need first to determine the weight of the object, to do that we will use the following formula:

[tex]W=mg[/tex]

Where:

[tex]\begin{gathered} m=\text{ mass} \\ g=\text{ acceleration of gravity} \end{gathered}[/tex]

Now we plug in the values:

[tex]W=(2.5\operatorname{kg})(9.8\frac{m}{s^2})[/tex]

Solving the operations we get:

[tex]W=24.5N[/tex]

Now we use Hooke's law:

[tex]F=kx[/tex]

Where:

[tex]\begin{gathered} F=\text{ force} \\ k=\text{ spring contant} \\ x=\text{ distance stretched} \end{gathered}[/tex]

Now we solve for "k" by dividing both sides by "x":

[tex]\frac{F}{x}=k[/tex]

Now, since the object is placed vertically this means that the only force acting on the spring in the weight of the object, therefore:

[tex]F=W[/tex]

Now we plug in the known values:

[tex]\frac{24.5N}{3.02\operatorname{cm}}=k[/tex]

Solving the operations we get:

[tex]8.11\frac{N}{\operatorname{cm}}=k[/tex]

Since we are required to express the constant in N/m, we need to convert the centimeters into meters. To do that we will use the following conversion factor:

[tex]100\operatorname{cm}=1m[/tex]

Now we multiply by the conversion factor in decimal form, placing the centimeters as numerator:

[tex]8.11\frac{N}{\operatorname{cm}}\times\frac{100\operatorname{cm}}{1m}=811.26\frac{N}{m}[/tex]

Therefore, the constant of the spring is 811.26 N/m.

part (b) Now we are asked to determine the distance is an object of 1.25 kg is place. First, we determine the weight of the new object:

[tex]W=mg[/tex]

Now we plug in the values:

[tex]W=(1.25\operatorname{kg})(9.8\frac{m}{s^2})=12.25N[/tex]

Now we use Hooke's law, but we solve for the distance "x" by dividing both sides by the constant "k", we get:

[tex]\frac{F}{k}=x[/tex]

Just as before, the only force acting is the weight, therefore, we plug in the values we got:

[tex]\frac{12.25N}{811.26\frac{N}{m}}=x[/tex]

Solving the operations:

[tex]0.015m=x[/tex]

Now we convert the meters into centimeters using the same conversion factor:

[tex]0.015m\times\frac{100\operatorname{cm}}{1m}=1.5\operatorname{cm}[/tex]

Therefore, the new mass stretches the spring 1.5 centimeters.

Part (c) Now we are asked to determine the work that has to be done on the spring to stretch it 8.9 centimeters. To determine that we will use the following formula for the work done on a spring:

[tex]w=\frac{1}{2}kx^2[/tex]

Now we replace the values:

[tex]w=\frac{1}{2}(811.26\frac{N}{m})(8.9\operatorname{cm})^2[/tex]

We will first convert the 8.9 centimeters into meters:

[tex]8.9\operatorname{cm}\times\frac{1m}{100\operatorname{cm}}=0.089m[/tex]

Now we replace this in the formula for the work:

[tex]w=\frac{1}{2}(811.26\frac{N}{m})(0.089m)^2[/tex]

Solving the operations we get:

[tex]w=3.21J[/tex]

Therefore, the work is 3.21 Joules.

The diagram below shows a block on a horizontal, frictionless surface. A 100.-newton force acts on the block at an angle of 30.0° above the horizontal. 100. N F 30.0° Block 77 Frictionless Surface What is the magnitude of force F, to the nearest tenth of a newton, if it establishes equilibrium?

Answers

ANSWER:

STEP-BY-STEP EXPLANATION:

URGENT!! ILL GIVE
BRAINLIEST!!!! AND 100 POINTS!!!!!!

When a pole vaulter reaches the top of her vault, how does her potential energy compare to her kinetic energy?

A. The kinetic energy is twice the amount of potential energy.

B. The kinetic energy is greater than the potential energy.

C. The kinetic energy and potential energy are the same.

D. The kinetic energy is less than the potential energy.

Answers

Answer: b

Explanation:

URGENT!! ILL GIVE
BRAINLIEST!!!! AND 100 POINTS!!!!!!

What type of energy transfer is shown in this image?

A. electrical to mechanical

B. chemical to electrical

C. electrical to chemical

D. chemical to mechanical

Answers

Answer:

The Correct Answer Is b.

In a tug-of-war two teams are pulling in opposite directions, but neither team ismoving. What do the net forces equal in this example?

Answers

so, the net forces equal zero

Explanation

Step 1

Draw the situation

Newton's first law says that if the net force on an object is zero, then that object will have zero acceleration

in this case due to neither team is moving, we can say the center point is at rest,so its acceleration is zero

According to Newton's law, as the object is at rest, the sum of the forces acting on it equals zero

so

sum of forces = 0

the forces are due to the teams pulling so,

[tex]\begin{gathered} \text{Force team 1 -force team 2= 0} \\ \text{if we move the second term to the rigth} \\ \text{Force team 1=Force team }2 \end{gathered}[/tex]

so, the net forces equal zero

Other Questions
one of the most effective methods to assess how well a firm is delivering adequate service to consumers is to employ the blank model to evaluate their service provision. how would i solve these equations 9x+y=16Y=7x A student accidentally spilled milk all over his homework. He is trying to figure out what he wrote for his homework problem. He knows that vector A was 35m S and he can see his answer for the resultant was 71m southeast. What was vector B? The graphs of y = f(x) and y = g(x) are shown on the coordinate plane below.y = g(x) 10y = f(x)210-10-9-8-7 -6 -5 -4 -3 -2 -1 0- 1-26789 10-6-107If g(x) = kf(x), what is the value of k? what is the relationship between dignity and respect PLEASE HELP AND DO NOT PLAYGRIZE !!!!!!!!!!!!!!!!!! Write two to three paragraphs summarizing the effects of Reconstruction in Georgia. Describe key changes that resulted, both successes and failures. Include only the most important points. The weight (W kg) of a decaying radio active substance after n years is given by W= Wo(1/2)^n/100, where Wo kg is the initial weight of the substance. 1. Atleast how many years will it take for the radioactive substance to lose to 10% of its initial weight? Every little while, I could hear something about the abolitionists. It was some time before I found what the word meant. It was always used in such connections as to make it an interesting word to me. If a slave ran away and succeeded in getting clear, or if a slave killed his master, set fire to a barn, or did any thing very wrong in the mind of a slaveholder, it was spoken of as the fruit of abolition.Narrative of the Life of Frederick Douglass,Frederick DouglassUse your knowledge of context clues, word roots, and affixes to determine the meaning of the word abolitionist.a person who likes to set firesa person who wants to take slavery awaya slave resisting his or her ownera slave fighting back against his or her masters Lucite contains 59.9 g C, 8.06 g H,and 32.0 g O. You want todetermine the empirical formula.How many moles of C are in thesample?[ ? ] mol C What was a violent threat to the men who were seeking the oasis?banditsovultureshyenasokiller ants 234Weight (pounds)OA. The weight of the package is a function of the number ofpackages.B. The shipping cost is a function of the number of packages.C. The shipping cost is a function of the weight of the package.OD. The weight of the package is a function of the shipping cost.SUBMIT what are characteristics of the production-run samples used for statistical process control? (choose every correct answer.) Name at least 3 major accomplishments of the Carolingian Renaissance. 200200 dividend by 20 The function in the form f(x)=2/5x-5 is graphed below. What is the value of x when f(x)=-9? __________ is when frequently used brain synapses begin to strengthen and rarely used connections begin to prune. a. induction b. plasticity c. synaptogenesis d. elasticity please select the best answer from the choices provided a b c d Calculate the PH solution if...[H3O+] = 3,7 x 10-2mol/L= 2. Calculate the gross pay for each of the following positions for a 30-hour work week: $8.50/hr $9.20/hr Locker room attendant Bus server Pantry help Waiter/Waitress $9.45/hr $7.00/hr a) Pantry help c) Waiter/Waitress b) Locker room attendant d) Bus server find the probability for each situation. question 1. A number cube is a spun two times. find the probability that it will land on a event number both times. A biologist measured the length and mass of 20 reptiles. The equation y = 0.3x - 2 is the line of best fit for the data, where x is the length, incentimeters, and y is the mass, in grams.Based on the equation, what is the approximate length of a reptile that has a mass of 20.5 grams?