A 0.09 kg beetle climbs vertically a distance of 0.35 m up a wall at a speed of 0.02 m/s. What is the beetle’s power output?

Answers

Answer 1

The power output of the beetle of mass 0.09 kg is 0.0176 W.

What is power?

Power is the rate at which work is done per seconds

To calculate the power output of the beetle, we use the formula below.

Formula:

P = mgv............. Equation 1

Where:

P = Power output of the beetlem = Mass of the beetlev = Velocity of the beetleg = Acceleration due to gravity

From the question,

Given:

m = 0.09 kgg = 9.8 m/s²v = 0.02 m/s

Substitute these values into equation 1

P = 0.09×9.8×0.02P = 0.0176 W.

Hence, the beetle's power output is 0.0176 W.

Learn more about power here: https://brainly.com/question/25864308

#SPJ1


Related Questions

Two spherical objects have masses of 1.5 x 105 kg and 8.5 x 102 kg. Their centers are separated by a distance of 2500 m. Find the gravitational attraction between them.

Answers

Given data

*The mass of the first spherical object is m = 1.5 × 10^5 kg

*The mass of the second spherical object is M = 8.5 × 10^2 kg

*The separated distance between the two spherical objects is r = 2500 m

The expression for the gravitational attraction between them is given as

[tex]F=\frac{GmM}{r^2}[/tex]

*Here G = 6.67 × 10^-11 N.m^2/kg^2 is the value of the gravitational constant

Substitute the known values in the above expression as

[tex]\begin{gathered} F=\frac{(6.67\times10^{-11})(1.5\times10^5)(8.5\times10^2)}{(2500)^2} \\ =1.36\times10^{-9}\text{ N} \end{gathered}[/tex]

Hence, the gravitational attraction between them is F = 1.36 × 10^-9 N

A speedboat increases its speed from 13.5 m/s to 27.4 m/s in a distance of 241 m. Determine the time over which this acceleration occurs?

Answers

V² = U² + 2aS

27.4² = 13.5² + 2*241a

750.76 = 182.25 + 482a

750.76 - 182.25 = 482a

568.51/482

a = 1.18m/s^2

How do I do this problem? 9.A) A 100 g apple is falling from a tree. What is the impulse that Earth exerts on it during the first 0.5s ofits fall? What about the next 0.5 s?9.B) The same 100 g apple is falling from the tree. What is the impulse that Earth exerts on it in the first0.5 m of its fall? What about the second 0.5 m?9.c) Give a clear explanation for why the answers from 9.a and 9.b are different.

Answers

Given:

The mass of the apple is m = 100g = 0.1 kg

To find (A) the impulse during the first 0.5 s and in the next 0.5 s

(B) Impulse during the first 0.5 m of its fall and about the second 0.5 m.

(C)

Explanation:

(A) The force acting on the apple will be

[tex]\begin{gathered} F=mg \\ =0.1\times9.8\text{ } \\ =\text{ 0.98 N} \end{gathered}[/tex]

Impulse during the first 0.5 s will be

[tex]\begin{gathered} Impulse\text{ = 0.98}\times0.5 \\ =0.49\text{ N s} \end{gathered}[/tex]

Impulse during the second 0.5 s will be

[tex]\begin{gathered} Impulse\text{ =0.98}\times(0.5+0.5) \\ =0.98\text{ N s} \end{gathered}[/tex]

(B) The distance traveled by the apple is d = 0.5 m

[tex]\begin{gathered} d1=\frac{1}{2}g(t1)^2 \\ t1=\sqrt{\frac{2d1}{g}} \\ =\sqrt{\frac{2\times0.5}{9.8}} \\ =0.319\text{ s} \end{gathered}[/tex]

The velocity will be

[tex]\begin{gathered} v1=gt1 \\ =9.8\times0.319 \\ =3.1262\text{ m/s} \end{gathered}[/tex]

The distance traveled by the apple in the second 0.5 m

[tex]\begin{gathered} d2=\frac{1}{2}g(t2)^2 \\ t2=\sqrt{\frac{2d2}{g}} \\ =\sqrt{\frac{2\times0.5}{9.8}} \\ =0.319\text{ s} \end{gathered}[/tex]

The velocity will be

'

[tex]\begin{gathered} v2=v1+gt2 \\ =3.1262+(9.8\times0.319) \\ =6.2524\text{ m/s} \end{gathered}[/tex]

The impulse will be

[tex]\begin{gathered} Impulse=\text{ change in momentum} \\ =mv2-mv1 \\ =0.1\times(6.2524)-0.1\times(3.1262) \\ =0.62524-0.31262 \\ =0.31262\text{ N s} \end{gathered}[/tex]

(C) Although the numerical value is the same in both the cases but in part A it is the time and in part B it is the distance.

A hiker walks 16.19 m at 18.99 degrees. What is the Y component of hisdisplacement?

Answers

Given:

Distance = 16.9 m

θ = 18.99 degrees.

Let's find the Y component of his displacement.

To find the y-component of his displacement, apply the formula:

[tex]F_y=d\sin \theta[/tex]

Hence, to find the y-component of his displacement, substitute values into the formula.

Thus, we have:

[tex]F_y=16.19\sin 18.99[/tex]

Solving further:

[tex]F_y=5.27\text{ m}[/tex]

Therefore, the Y component of his displacement is 5.27 m

ANSWER:

5.27 m

The frequency of a sound wave changes if the source of the sound is moving relative to the listener. What is this called?

Answers

Given

The frequency of a sound wave changes if the source of the sound is moving relative to the listener.

To find

What is this called?

Explanation

For an observer, when any source of sound is moving towards it or away from it then the sound becomes higher and lower respectively.

Thus the moment of the source changes the frequency of the sound. This is known as doppler effect.

Conclusion

The given effect is known as Doppler effect.

Q4. A 5.0-kg bowling ball rolls down africtionless 2.5 m tall ramp and strikes astationary mass at the bottom of the ramp in aperfectly elastic collision. To whatheight back up the ramp does the first bowlingtravel after the collision ita) the stationary mass is also 5.0 kgb) the stationary mass is 10.0 kgC) the stationary mass is 500.00 kg

Answers

a)

Using conservation of energy for ball 1:

[tex]\begin{gathered} E1=E2 \\ K1+U1=K2+U2 \\ 0+m1gh=\frac{1}{2}m1v1^2 \end{gathered}[/tex]

Solve for v1:

[tex]\begin{gathered} v1=\sqrt[]{2gh} \\ v1=\sqrt[]{2(9.8)(2.5)} \\ v1=7\frac{m}{s} \end{gathered}[/tex][tex]v1=v2^{\prime}-v1^{\prime}[/tex]

Using conservation of momentum:

[tex]\begin{gathered} m1v1=m1(v2^{\prime}-v1^{\prime})+m2v2^{\prime} \\ v2^{\prime}=\frac{2m1v1}{(m1+m2)} \\ \end{gathered}[/tex]

a)

m2 = 5 kg

[tex]v2^{\prime}=7\frac{m}{s}[/tex]

so:

[tex]\begin{gathered} v1^{\prime}=7-7 \\ v1^{\prime}=0 \end{gathered}[/tex]

so:

[tex]\begin{gathered} m1gh^{\prime}=\frac{1}{2}m1(v1^{\prime})^2 \\ h^{\prime}=0 \end{gathered}[/tex]

If the stationary mass is 5.0 kg the height back up the ramp is 0 meters

b)

m2 = 10

[tex]v2^{\prime}=\frac{14}{3}\frac{m}{s}[/tex]

so:

[tex]v1^{\prime}=-\frac{7}{3}\frac{m}{s}[/tex][tex]\begin{gathered} m1gh^{\prime}=\frac{1}{2}m1(v1^{\prime})^2 \\ h^{\prime}\approx0.2778m \end{gathered}[/tex]

If the stationary mass is 10.0 kg the height back up the ramp is 0.2778 meters

c)

m2 = 500.00kg

[tex]v2^{\prime}=\frac{14}{101}\frac{m}{s}[/tex]

so:

[tex]v1^{\prime}\approx-\frac{693}{101}\frac{m}{s}[/tex][tex]\begin{gathered} m1gh^{\prime}=\frac{1}{2}m1(v1^{\prime})^2 \\ h^{\prime}\approx2.4m \end{gathered}[/tex]

If the stationary mass is 500.0 kg the height back up the ramp is 2.4 meters

If raindrops are falling vertically at 7.90 m/s, what angle from the vertical do they make for a person jogging at 2.47 m/s? (Enter your answer in degrees.)

Answers

17.36 degrees

Explanation

Step 1

Diagram:

so, we have a rigth triangle then let

[tex]\begin{gathered} angle\text{ =}\theta \\ opposite\text{ side= 2.47} \\ adjacent\text{ side =7.9} \end{gathered}[/tex]

Step 2

now, we need a function that relates those values to find the missin angle , it is

[tex]tan\theta=\frac{opposite\text{ side}}{adjacent\text{ side}}[/tex]

replace ans solve for the angle

[tex]\begin{gathered} tan\theta=\frac{2.47}{7.9} \\ tan\theta=0.31 \\ inverse\text{ tan function in both sides} \\ \tan^{-1}(tan\theta)=\tan^{-1}(0.31) \\ \theta=17.36\text{ \degree} \end{gathered}[/tex]

therefore, the answer is

17.36 degrees

I hope this helps you

A wave traveling on a Slinky® that is stretched to 4 m takes 4.97 s to travel the length of the Slinky and back again.(a) What is the speed (in m/s) of the wave? 1.61 m/s b) Using the same Slinky® stretched to the same length, a standing wave is created which consists of seven antinodes and eight nodes. At what frequency (in Hz) must the Slinky be oscillating? Hz =

Answers

Given:

The length of the slinky is: L = 4 m.

The time taken by the wave to travel the length and back again is: t = 4.97 s

To find:

a) The speed of the wave

b) The frequency of the wave

Explanation:

a)

As the wave on the slinky travels along the length and back again, it covers a distance that is double the distance of the slinky.

Thus, the total distance "d" traveled by the wave will be 2L.

The speed "v" of the wave is given as:

[tex]\begin{gathered} v=\frac{d}{t} \\ \\ v=\frac{2L}{t} \end{gathered}[/tex]

Substituting the values in the above equation, we get:

[tex]\begin{gathered} v=\frac{2\times4\text{ m}}{4.97\text{ s}} \\ \\ v=\frac{8\text{ m}}{4.97\text{ s}} \\ \\ v=1.61\text{ m/s} \end{gathered}[/tex]

Thus, the speed of the wave is 1.61 m/s

b)

The standing wave created consists of seven antinodes and eight nodes. Thus, the length of the slinky is 7/2 times the wavelength of the wave.

[tex]L=\frac{7}{2}\lambda[/tex]

Rearranging the above equation, we get:

[tex]\lambda=\frac{2}{7}L[/tex]

Substituting the values in the above equation, we get:

[tex]\lambda=\frac{2}{7}\times4\text{ m}=\frac{8\text{ m}}{7}=1.143\text{ m}[/tex]

The speed "v" of the wave is related to its wavelength "λ" and a frequency "f" as:

[tex]v=f\lambda[/tex]

Rearranging the above equation, we get:

[tex]f=\frac{v}{\lambda}[/tex]

Substituting the values in the above equation, we get:

[tex]\begin{gathered} f=\frac{1.61\text{ m/s}}{1.143\text{ m}} \\ \\ f=1.41\text{ Hz} \end{gathered}[/tex]

Thus, the frequency of the wave on the slinky is 1.41 Hz.

Final answer:

a) The speed of the wave is 1.61 m/s.

b) The frequency of the oscillation of the slinky is 1.41 Hz.

Object A has a mass of 3 kg and a velocity of 2 m/s. It collides and sticks to object B which had a mass of 10 kg and a velocity of 1 m/s. How fast will the object AB be moving after the collision?

Answers

Object AB is moving with the velocity of 1.23 m/s.

Givne data:

The mass of object A is m=3 kg.

The velocity of object A is u=2 m/s.

The mass of object B is M=10 kg

The velocity of object B is v=1 m/s.

Applying the conservation of momentum before and after the collision,

[tex]\begin{gathered} mu+Mv=(m+M)V \\ (3)(2)+(10)(1)=(3+10)V \\ V=1.23\text{ m/s} \end{gathered}[/tex]

Thus, the object AB moving with a velocity of 1.23 m/s after the collision.

Layla was hiking in the Grand Canyon with her best friend Saige. The temperature when they started gut was only 4.0° C. She shouted at the canyon wall and 2.8 s later she heard her own voice echoing back. How far away was the canyon wall? a) 4.6 x 10² m b) 46.6 m c) 47 m d) 466.7 m

Answers

Given:

The temperature of the surrounding is 4 degrees Celsius.

The time taken for the echo to reach the ears is t = 2.8 s

Required:

The distance from the canyon wall.

Explanation:

The distance traveled by the sound is 2d as it travels up to the wall and bounces back.

The distance can be calculated by the formula

[tex]d=\frac{v\times t}{2}[/tex]

Here, the speed of sound at 4 degrees Celsius is

[tex]v=331.3\text{ m/s}[/tex]

On substituting the values, the distance traveled will be

[tex]\begin{gathered} d=\frac{331.3\times2.8}{2} \\ =4.6\times10^2\text{ m} \end{gathered}[/tex]

Final Answer: The distance traveled is 4.6 x 10^2 m

Which of the following representsthis number in standard notation?5.05 · 104A. 50500B. 5050C. 0.000505D. 0.0505

Answers

The number is denoted in standard notation is as follows:

[tex]\begin{gathered} Y=5.05\times10^4 \\ Y=5.05\times10000 \\ Y=50500 \end{gathered}[/tex]

Thus, the standard notation of this number is 50500.

Thus, the correct option for the above question is A.

An ocean wave usually occurs at a frequency of 2.0 hz what is the period of each wave?

Answers

The period of a wave can be calculated with the formula below:

[tex]T=\frac{1}{f}[/tex]

Where f is the frequency.

If the frequency is 2 Hz, the period is:

[tex]T=\frac{1}{2}=0.5\text{ s}[/tex]

Therefore the period is 0.5 seconds.

Before an impact, object 1 has a momentum of 25 kg m/s straight north and object 2 has amomentum of 75 kg m/s straight south. What is the total momentum after the impact?

Answers

Answer:

50 kg m/s straight south.

Explanation:

By the conservation of momentum, the total momentum after the impact is equal to the momentum before the impact. Since the objects have momentum in opposite directions, we need to subtract the values, so

[tex]\begin{gathered} p=75\text{ kg m/s - 25 kg m/s} \\ p=50\text{ kg m/s} \end{gathered}[/tex]

Therefore, the total momentum after the impact is 50 kg m/s straight south.

Coulomb's Law equation is:  FE = kq1q2/r2In this expression,  FE  is the electric force between charges q1  and q2 separated by distance r.When the signs of the charges are included for q1  and q2 , the evaluation of Coulomb's Law equation can yield a positive or negative answer for FE .What is the appropriate interpretation of the sign of the numeric evaluation of FE ?(A) If FE is negative, the charges are attracting.(B) If FE is positive, the charges are attracting.

Answers

We know like charges repel amd unlike charges attract.

Thus if one charge is positive and other is negative then both charges will attract each other.

So if the force is negative , the charges are attracting.

Thus the answer is:

(A) If FE is negative, the charges are attracting.

A 0.86 m tall object is placed 3.35 m away from a lens. If the image is 4.58 m tall, how far away from the lens was the image produced? O

Answers

The magnification is the ratio of the image size to the object size. If the image and object are in the same medium, it is just the image distance divided by the object distance:

[tex]M=\frac{i}{o}[/tex]

On the other hand:

[tex]M=\frac{h^{\prime}}{h}[/tex]

Where h' is the size of the image and h is the size of the object.

Therefore:

[tex]\frac{h^{\prime}}{h}=\frac{i}{o}[/tex]

Substitute h'=4.58m, h=0.86m and o=3.35m to find i, the distance from the lens at which the image is produced:

[tex]\begin{gathered} \Rightarrow i=\frac{h^{\prime}}{h}\cdot o \\ =\frac{4.58m}{0.86m}\cdot3.35m \\ =17.84m \end{gathered}[/tex]

Therefore, the image is produced 17.84m away from the lens.


Two positive charge spheres, the spheres are separated by 0.40 m. The charge on the first sphere is 100 microcoulombs and the
charge on the second sphere has 30 microcoulombs. Calculate the Electric Force on the charges?

Answers

Answer: 168.75 N

Explanation:

first, let's convert microcoulombs to coulombs

q1 = 1e-4 C

q2 = 3e-5 C

r = 0.4 m

then use the equation Fe = [tex]\frac{kq_{1} q_{2}}{r^{2} }[/tex]

plug in values --> F = (9e9*1e-4*3e-5)/(0.4)^2

F = 168.75 N

A 51-cm-diameter wheel accelerates uniformly about its center from 150 rpm to 290 rpm in 4.0 s.(A) Determine it's angular acceleration. (B) Determine the radial component of the linear acceleration of a point on the edge of the wheel 1.1 s after it has started accelerating. (C) Determine the tangential component of the linear acceleration of a point on the edge of a wheel 1.1 s after it has started accelerating.

Answers

Answer:

(A) 7/6 pi /s^2

(B) 4.145 m/s^2

(C) 119pi/200 m/s^2

Explanation:

Part A.

The angular acceleration is given by

[tex]\alpha=\frac{\omega_f-\omega_i}{\Delta t}[/tex]

where wf is the initial angular velocity and wi is the final angular velocity and t is the time interval.

Now, we are given the angular velocity is given in rpm and we have to convert it into radians/sec .

150 rpm = 150 x 2pi / 60 min = 5 pi rad/ sec

290 rpm = 290 x 2pi / 60 min = 29/ 3 pi rad/ sec

Now we are in the position to find the angular acceleration

[tex]\alpha=\frac{\frac{29}{3}\pi-5\pi}{4s-0s}[/tex][tex]\boxed{\alpha=\frac{7}{6}\pi\; /s^2}[/tex]

which is our answer!

Part B.

The radial acceleration is given by

[tex]a_r=\frac{v^2}{R}[/tex]

where v is the velocity of the object (moving in a circle) and R is the radius of the circle.

Now,

[tex]v=\alpha Rt[/tex]

putting in the values of alpha, R and t = 1.1 s gives

[tex]v=\frac{7}{6}\pi\times\frac{0.51}{2}\times1.1[/tex][tex]v=1.028\; m/s[/tex]

therefore,

[tex]a_r=\frac{v^2}{R}=\frac{(1.028)^2}{0.51/2}[/tex][tex]\boxed{a_r=4.145/s^2}[/tex]

which is our answer!

Part C.

Here we have to relationship between angular and tangential acceleration:

[tex]a=\alpha R[/tex]

where r is the radius of the circle.

Since R = 0.51/2 m, we have

[tex]a=\frac{7}{6}\pi\cdot\frac{0.51}{2}m[/tex]

[tex]\boxed{a=\frac{119}{400}\pi}[/tex]

which is our answer!

Hence, to summerise

(A) 7/6 pi /s^2

(B) 4.145 m/s^2

(C) 119pi/200 m/s^2

it is known that the mass of the earth is 81 times the mass of the moon. show that the point of weightlessness between the earth and the moon for a spacecraft house occurs at √9/10 of the distance to the moon​

Answers

it 9263 i had that question

A mass falls from rest to the growl in 15 secs. Find y, the vertical distance it travelled

Answers

We will determine the distance fallen as follows:

[tex]d=v_it+\frac{1}{2}at^2[/tex]

Thus:

[tex]d=(m/s)(15s)+\frac{1}{2}(9.8m/s^2)(15s)^2\Rightarrow d=1102.5m[/tex]

So, it traveled 1102.5 meters.

McKenna is performing an experiment. She is testing the relationship between the temperature of water, and how long it takes for rust to form on iron plates. If she finds that higher temperatures lead to lower times for rusting, what is the qualitative relationship?positive correlationno correlationnegative correlationinverse square correlation

Answers

As with the increase in the temperature, the time taken to form the rust on the iron plate decreases.

This correlation is known as a negative correlation.

Thus, the relationship between the temperature of the water and the time taken to form rust on the iron plate is a negative correlation.

Hence, the third option is the correct answer.

The binding energy of a nucleus is always negative.Question 4 options:TrueFalse

Answers

ANSWER

False.

EXPLANATION

Nuclear binding energy is the energy that is required to split the nucleus (of an atom) into nucleons: protons and neutrons.

The binding energy of a nucleus is always positive because nuclei require energy to separate them and it is impossible for nuclei to gain energy by being separated.

Therefore, the answer is false.

False Because the nuclear has always been negative to the energy from the same side

In a dart gun, a spring with k = 400.0 N/m is compressed 8.0 cm when the dart (mass m = 20.0 g) is loaded.
(a) What is the muzzle speed of the dart when the spring is released? Ignore friction.

(b) If the dart gun is located on a table top 2.2 m above the ground, and once the spring is released, it remains compressed by 4 cm, what is the final speed of the dart as it hits the ground?

Answers

The muzzle speed of the dart when the spring is released is 11.3 m/s

The given parameters are

k = spring  constant = 400 N/m

m = mass = 20 g = 0.02 kg

Compression = x = 8 cm = 0.08 m

According to the question,

When the dart is loaded, the potential energy is converted into kinetic energy.

Potential Energy (P.E.)

[tex]P.E. =\frac{1}{2} kx^{2}[/tex]

Putting the values,

[tex]P.E. =\frac{1}{2} *400*(0.08)^{2} = 1.28[/tex]

Now, Kinetic Energy (K.E.)

K. E. = [tex]\frac{1}{2} mv^{2}[/tex] = [tex]\frac{1}{2} *0.02*v^{2}= 0.01 v^{2}[/tex]

Now, P.E. = K.E.

[tex]0.01 v^{2} = 1.28 \\\\v^{2} =\frac{1.28}{0.01} \\\\v^{2} = 128\\ \\v = 11.3[/tex]

Hence, the muzzle speed of the dart when the spring is released is 11.3 m/s

To read more about speed, visit https://brainly.com/question/28224010

#SPJ1

An escalator is used to move 20 passengers every 60s from the first floor of a department store to the second. The second floor is located above the first floor. The average passenger's mass is 54.9 kg. Determine the power requirement of the escalator in order to move this number of passengers in this amount of time

Answers

From the information given,

The average passenger's mass is 54.9 kg

Force exerted by each passenger = weight of passenger = mg

where

m = mass = 54.9

g = acceleration due to gravity = 9.8m/s^2

Force = weight = 54.9 x 9.8 = 538.02 N

We would determine the work done in moving one passenger. The formula for calculating work is

work = force x distance

distance = 5.2

Work = 538.02 x 5.2 = 2797.704 J

Work done in moving 20 passengers = 2797.704 x 20 = 55954.08

Recall,

Power = work/time

Given that time = 60s,

Power = 55954.08/60

Power = 933 W

the power requirement of the escalator in order to move this number of passengers in this amount of time is 933 W

Two large parallel plates are 17 cm apart and have equal but opposite charges on the surfaces facing each other. An electron is placed half way between the plates. Find the potential difference between the plates if the force on the electron is 5.2×10^(−15) N .

Answers

The potential difference between the plates is equal to 5525 V if the force on the electron is 5.2 ×10⁻¹⁵N.

What is the formula for the electric field of a capacitor?

The magnitude of the electric field of the parallel plate capacitor can be calculated from the formula given below:

E = F /q

Where E is the electric field, q is the charge on the electrons and F is the force.

Given the distance between plates, d = 17 cm = 0.17 m

The force, F = 5.2 ×10⁻¹⁵ N, q = 1.6 × 10⁻¹⁹ C

E = 5.2 ×10⁻¹⁵/1.6 × 10⁻¹⁹

E = 32500 N/C

The potential difference , V = E × d

V = 32500 × 0.17

V = 5525 V

Learn more about electric field, here:

https://brainly.com/question/26409781

#SPJ1

A hair dryer draws 6.0 A when plugged into a 120-V line. (a) What is its resistance? (b) How much charge passes through it in 15 min?

Answers

We will have the following:

a)

[tex]R=\frac{120V}{6A}\Rightarrow R=20\Omega[/tex]

b)

[tex]Q=(6A)(15min\ast\frac{60s}{1min})\Rightarrow Q=5400W[/tex]

So, the charge is 5400 W in 15 minutes.

A full tea cup has a mass of 0.40 kg. If the full cup applies a pressure of 1000.the radius of the circular ring imnrinted on the table?

Answers

Given:

The mass of the cup, m=0.40 kg

The pressure applied by the cup, P=1000 N/m²= 1000 Pa

To find:

The radius of the ring imprinted on the table.

Explanation:

The pressure is defined as the force per unit area.

Thus the pressure applied by the cup is given by,

[tex]\begin{gathered} P=\frac{F}{A} \\ =\frac{mg}{\pi r^2} \end{gathered}[/tex]

Where A is the area of the ring, g is the acceleration due to gravity, and r is the radius of the ring.

On rearranging the above equation,

[tex]r=\sqrt{\frac{mg}{P\pi}}[/tex]

On substituting the known values,

[tex]\begin{gathered} r=\sqrt{\frac{0.40\times10}{1000\pi}} \\ =0.036\text{ m} \\ =3.6\text{ cm} \end{gathered}[/tex]

Final answer:

Thus the radius of the ring imprinted on the table is 3.6 cm

Therefore the correct answer is option 3.

In this example, the system gains the ability to cause change the higher the brick is raised above the earth. Is this true or false?

Answers

ANSWER

True

EXPLANATION

The higher the brick is, the more potential energy it has. Therefore, it is true that it gains the ability to cause change the higher it is raised above the Earth.

6 identical books are lying on a desktop. a tidy student decides to stack the books one on top of the other. if students do 11 J of work width of the spine of each book is 2.5 what is the mass

Answers

[tex]\begin{gathered} W_T=11J \\ 6\text{ books} \\ m=\text{?} \\ y=2.5\text{ cm= 0.025m} \\ In\text{ this case the work is due to the }weight\text{ of each book. But one book} \\ \text{wont moved because it will be on the bottom } \\ W=\text{mgy} \\ g=9.81m/s^2 \\ \text{For the second book} \\ W=m(9.81m/s^2)(0.025m)=m(0.24525m^2/s^2\text{)} \\ \text{For the third book} \\ W=m(9.81m/s^2)(0.025m+0.025m)=m(0.4905m^2/s^2) \\ \text{For the fourth book} \\ W=m(9.81m/s^2)(0.025m+0.025m+0.025m)=m(0.73575m^2/s^2) \\ \text{For the fifth book} \\ W=m(9.81m/s^2)(0.025m+0.025m+0.025m+0.025m)=m(0.981m^2/s^2) \\ \text{For the sixth book} \\ W=m(9.81m/s^2)(0.025m+0.025m+0.025m+0.025m+0.025m)=m(1.22625m^2/s^2) \\ W_T=m(0.24525m^2/s^2\text{)+}m(0.4905m^2/s^2)+m(0.73575m^2/s^2)+m(0.981m^2/s^2)+m(1.22625m^2/s^2) \\ W_T=m(3.67874m^2/s^2) \\ 11J=m(3.67874m^2/s^2) \\ \text{Solving m} \\ m=\frac{11J}{3.67874m^2/s^2} \\ m=2.99\text{ kg}\approx3\operatorname{kg} \\ \text{The mass of each book is 3kg} \end{gathered}[/tex]

Part 3/3 find the thermal energy transferred. Answer in units of KJ

Answers

0.0We are asked to determine the volume of a gas given the moles, the temperature, and the pressure. To do that, we use the following formula:

[tex]PV=nRT[/tex]

Where:

[tex]\begin{gathered} P=pressure \\ V=\text{ volume} \\ n=\text{ number of moles} \\ R=\text{ universal gas constant} \\ T=\text{ temperature} \end{gathered}[/tex]

Now, we substitute the values for the final state. Since the process is isothermally this means that the final temperature is the same as the initial temperature. we get:

[tex](1.8atm)V_f=(2mol)(8.31415\frac{J}{Kmol})(243K)[/tex]

We need to convert the pressure from atmospheres to Pascals. To do that we use the following conversion factor:

[tex]1atm=101325Pa[/tex]

Multiplying by the conversion factor we get:

[tex]1.8atm\times\frac{101325Pa}{1atm}=182385Pa[/tex]

Now, we substitute the value in the formula:

[tex](182385Pa)V_f=(2mol)(8.3145\times\frac{J}{Kmol})(243K)[/tex]

Solving the operations:

[tex](182385Pa)V_f=4040.847J[/tex]

Now, we divide both sides by 182385Pa:

[tex]V_f=\frac{4040.847J}{182385Pa}[/tex]

Solving the operations:

[tex]V_f=0.022m^3[/tex]

Therefore, the final volume is 0.022 cubic meters.

Part B. We are asked to determine the work done. To do that we will use the formula for isothermic work:

[tex]W=nRT\ln(\frac{P_0}{P_f})[/tex]

Where:

[tex]P_0,P_f=\text{ initial and final pressure}[/tex]

Now, we plug in the values:

[tex]W=(2mol)(8.31451\frac{J}{Kmol})(243K)\ln(\frac{0.21atm}{1.8atm})[/tex]

Now, we solve the operations:

[tex]W=-8681.51J[/tex]

Therefore, the work done is -8681.51 Joule. To convert to kilojoules we divide by 1000:

[tex]W=-8681.51J\times\frac{1kJ}{1000J}=-8.68kJ[/tex]

Part 3. In an isothermic process the change in internal energy is zero, therefore, according to the first law of thermodynamics we have:

[tex]Q-W=0[/tex]

Therefore:

[tex]Q=W[/tex]

Therefore, the amount of heat is equal to the amount of work. Therefore, the thermal energy transferred is:

[tex]Q=-8.68kJ[/tex]

Hey there, I have a physics question that sadly I can't figure out since the pearson e book keeps crashing. Also I am blind and CAN'T SEE PICTURES OR GRAPHS!! So for the question: Let θ be the angle that the vector A⃗ makes with the +x-axis, measured counterclockwise from that axis. Find the angle θ for a vector that has the following components.Part AAx= 4.20 m, Ay= -2.10 mExpress your answer in degrees.

Answers

ANSWER:

333.4°

STEP-BY-STEP EXPLANATION:

To find angle for a vector:

[tex]\theta=\tan ^{-1}\mleft(\frac{A_y}{A_x}\mright)[/tex]

We substitute the values of this case and the angle would then be:

[tex]\begin{gathered} \theta=\tan ^{-1}\mleft(\frac{-2.10}{4.20}\mright) \\ \theta=\tan ^{-1}(-0.5) \\ \theta=-26.56\cong-26.6 \\ \theta=360-26.6 \\ \theta=333.4\text{\degree} \end{gathered}[/tex]

The angle is 333.4°

Other Questions
The use of chemical products to control insects and weeds has long been opposed by those who worry about dangers to the environment. Gifford Pinchot National Forest in Washington State may have an answer to this controversy. There, managers have been controlling weeds and insects in their tree nursery with flocks of geese. A small flock of geese controlled insects and weeds in an area of 300 acres. The geese are inexpensive and require no further care once placed in the forest growing area.What is the author's attitude toward the use of geese to protect young forests? if i can't do the practice test how am I gonna pass the actual test lol please help me figure out how to determine the range of the following graph (the line y=5 is a horizontal asymptote) I need help with this I need to know what Im doing wrong.. do I need to put a negative for (y+8^2) or a positive 8 so confused help #4write in standard equation for a circle and identify center and radius In an all boys school, the heights of the student body are normally distributed with a mean of 71 inches and a standard deviation of 3.5 inches. Out of the 1707 boys who go to that school, how many would be expected to be taller than 75 inches tall, to the nearest whole number? the following data set shows the number of books checked out from the library during the first two weeks of the month .36, 39, 40, 42, 45, 2, 38, 41, 37, 38, 35, 37, 35, 38 Use the Pythagorean theorem to find each missing length to the nearest tenth I want you tell how to do please Sallys recipe for chocolate chip cookies yields 48, 1 oz cookies. If she want to make 48,2 oz cookies what is her conversation factor??(Hint : how many total oz cookies is in the original recipe yield and the new recipe yields) If three times the sum of a number and 1 is 15, find the number. Look at the following Polygon class:public class Polygon{ private int numSides; public Polygon() {numSides = 0; } public void setNumSides(int sides) {numSides = sides; } public int getNumSides() { return numSides; }}Write a public class named Triangle that is a subclass of the Polygon class. The Triangle class should have the following members:a private int field named basea private int field named heighta constructor that assigns 3 to the numSides field and assigns 0 to the base and height fieldsa public void method named setBase that accepts an int argument. The argument's value should be assigned to the base fielda public void method named setHeight that accepts an int argument. The argument's value should be assigned to the height fielda public method named getBase that returns the value of the base fielda public method named getHeight that returns the value of the height fielda public method named getArea that returns the area of the triangle as a double.Use the following formula to calculate the area: Area = (height * base) / 2.0 Question 3 The graph of the equation x + 3y=6 intersects the y- axis at which coordinate point? (0, 2) (0, 6) (0, 18) (6, 0) Give the range of the relation. 2), (18, 4) (11, -3), (2, -2), (2, 0), (6, a. range: 11, 6, 2, 18 b. range: -3, -2, 2, 4 c. range: 11, 6, 0, 2, 18 d. range: -3, -2, 0, 2, 4 Find the solution to the equation by substitution 13x-5y=-8y=3x Arrange the events from hamlet in the order in which they occur, from first to last. what was one thing corrie learned to fear above all else at scheveningen? how was this fear exhibited by corrie and her fellow prisoners? name at least four behaviors or activities that reflected this fear. Z1 and Z2 are a linear pair and the mZ1 is 9 times the measure of Z2. Find mZ1.mZ1 =degrees Pick a situation related to your major that would be modeled by one of the models discussed in class. Describe why this model would be helpful. Models are any application/word problem used for exponential/logarithmic functions. For example, exponential growth or decay are models of exponential functions. Now, choose one that would fit with your career path and describe why it would be helpful. the lowest point of the dry lake bed in the example has an elevation of -18 3/4 ft what number represents the change in elevation from the start of the path to the lowest point in the dry lake bed show your work (PLS HELP MEEE!!!) You bought a notebook and four erasers at Target. The notebook cost 5$.You spent a total of 25$ at target. How much did each eraser cost true or false: the student t distribution may be used to construct a confidence interval for the mean of any population, so long as the sample size is small.