i hve attached the question

I Hve Attached The Question

Answers

Answer 1

The speed of the planet Venus  3.56 × 10⁵ m/s.

We are given that,

The radius of planet Venus = r = 1.08 × 10¹¹ m

The orbital time period = t = 225 days = 1.9 × 10⁶sec

The speed of planet Venus = v = ?

The formula of the time period of complete one revolution of planet to the sun is given as,

T = 2π/ω

ω = r.v

v = 2πr/T

Putting , the values in above equation we can get,

v = (2 × 3.14 ×  1.08 × 10¹¹ m)/ ( 1.9 × 10⁶sec)

v = 3.56 × 10⁵ m/s

Therefore , the speed of planet Venus would be  3.56 × 10⁵ m/s

To know more speed

https://brainly.com/question/28224010

#SPJ1


Related Questions

A ray of light is traveling through a mineral sample is submerged inwater. The ray refracts as it enters the water, as shown in the diagrambelow.NormalWater41°149°63°27°MineralCalculate the absolute index of refraction of the mineral.

Answers

We are asked to determine the absolute index of refraction of a mineral submerged in water. To do that we will use Snell's law:

[tex]n_1\sin \theta_1=n_2\sin \theta_2[/tex]

Where n1 and n2 are the refraction indices of water and mineral respectively and the angles "theta 1" and "theta 2" are the incidence and refraction angles. We will solve for n1:

[tex]n_1=\frac{n_2\sin \theta_2}{\sin \theta_1}[/tex]

Replacing the values:

[tex]n_1=\frac{(589.29nm)\sin 41}{\sin 27}[/tex]

Solving the operations:

[tex]n_1=851.58nm[/tex]

Therefore, the index of refraction of the mineral is 851.58 nm.

Yea I think and this the other day and

Answers

Given:

The radius of the tank is: R = 7.5 feet.

Volume rate is: dV/dt = 60 cubic feet per hour.

h = 2.8 feet.

To find:

V, R, h, dV/dt, dR/dt, dh/dt

Explanation:

The given expression for volume is:

[tex]V=\pi h^2(R-\frac{1}{3}h)[/tex]

Substituting the values in the above equation, we get:

[tex]V=3.14\times2.8^2\times(7.5-\frac{1}{3}\times2.8)=161.74\text{ cubic feet}[/tex]

The volume is 161.74 cubic feet.

The radius of the tank is given as: R = 7.5 feet

The height of the water in the tank is given as: h = 2.8 feet

The volume rate of water is given as: dV/dt = 60 cubic feet per hour

As the radius of the tank is constant, its derivative will be zero. Thus, dR/dt = 0.

dh/dt can be calculated by differentiating the given volume equation with respect to time as:

[tex]\begin{gathered} \frac{dV}{dt}=\pi^2\times\frac{dh^2}{dt}\times(R-\frac{1}{3}\frac{dh}{dt}) \\ \\ \frac{dV}{dt}=\pi^2\times\frac{2dh}{dt}\times(R-\frac{1}{3}\frac{dh}{dt}) \\ \\ \frac{dV}{dt}=2\pi^2R\times\frac{dh}{dt}-\frac{2\pi^2}{3}\times(\frac{dh}{dt})^2 \end{gathered}[/tex]

Substituting the values in the above equation, we get:

[tex]\begin{gathered} 60=2\pi^2\times7.5\times\frac{dh}{dt}-\frac{2\pi^2}{3}\times(\frac{dh}{dt})^2 \\ \\ 60=148.044\frac{dh}{dt}-6.580(\frac{dh}{dt})^2 \\ \\ 6.580(\frac{dh}{dt})^2-148.044\frac{dh}{dt}+60=0 \end{gathered}[/tex]

Solving the above quadratic equation, we get:

dh/dt = 0.412 ft/hr or dh/dt = 22.086 ft/hr.

Final answer:

V = 161.74 cubic feet

R = 7.5 feet

h = 2.5 feet

dV/dt = 60 cubic feet per hour

dR/dt = 0

dh/dt = 22.086 ft/hr or 0.412 ft/hr

A scenario where two people are sitting on a see saw is modeled here. Assuming both people are at equal distances from the pivot point, which statements below would result in the unbalanced forces shown above? Select ALL that apply.A)Person A has a force of 70 N and person B has a force of 80 N.B)Person A has a force of 80 N and person B has a force of 70 N.C)Person A has a force of 75 N and person B has a force of 75 N.D)Person A has a force of 50 N and person B has a force of 40 N.E)Person A has a force of 50 N and person B has a force of 70 N.

Answers

[tex]\begin{gathered} \text{From the pic, the person A must have more force than person B, hence} \\ \text{Stataments true:} \\ B)\text{ Person A has a force of 80N and person B has a force of 70N} \\ D)\text{Person A has a force of 50N and person B has a force of 40N} \end{gathered}[/tex]

At what speed must a satellite be travelling so that it shall remain in a circular orbit 1683049 m above the surface of the Earth. Take the mass of the Earth as 6.0 × 1024 kg

Answers

Given data

*The given mass of the Earth is M_e = 6.0 × 10^24 kg

*The distance above the surface of the Earth is r = 1683049 m

The formula for the speed of the satellite must be traveling so that it shall remain in a circular orbit is given as

[tex]v=\sqrt[]{\frac{GM_e}{r}}[/tex]

Substitute the known values in the above expression as

[tex]\begin{gathered} v=\sqrt[]{\frac{(6.67\times10^{-11})(6.0\times10^{24})}{(1683049)}} \\ =1.54\times10^4\text{ m/s} \end{gathered}[/tex]

Hence, the speed of the satellite must be traveling so that it shall remain in a circular orbit is v = 1.54 × 10^4 m/s

How much time is required for a car engine to do 278 kJ of work, if its maximum power is 95 kW?

Answers

W= work = 278 kj

P = Power = 95 Kw

t= time

P = W / t

Isolate t

t = W /P

Replacing:

t= 278kj / 95Kw = 2.93 seconds

It is required 2.93 seconds

URGENT!! ILL GIVE
BRAINLIEST!!!! AND 100 POINTS!!!!!!

What type of energy transfer is shown in this image?

A. electrical to mechanical

B. chemical to electrical

C. electrical to chemical

D. chemical to mechanical

Answers

Answer:

The Correct Answer Is b.

what is this math problem Solve for x.

0.5x = 4.5

Answers

x = 9

if you format it as a fraction, it’s easier to solve.

1/2 * x = 9/2
divide both sides by 1/2

x = 9/2 * 2/1
x = 9
Answer: x = 9

Explanation: 0.5x = 4.5

Divide both sides: 4.5/0.5

Multiply numerator and denominator: x = 45/5

Cross out common factor: x = 9

Calculate the total capacitance of the three capacitors 30µF, 20µF & 12µF connected in series across a d.c. supply

Answers

Consider that three capacitors connected in series have the following total capacitance:

[tex]\frac{1}{C}=\frac{1}{C_1}+\frac{1}{C_2}+\frac{1}{C_3}[/tex]

where,

C1 = 30µF

C2 = 20µF

C3 = 12µF

Consider that the LCM of the three previous numbers is 60 (to sum the fractions).

Replace the previous values of the parameters into the formula for C and simplify:

[tex]\begin{gathered} \frac{1}{C}=\frac{1}{30}+\frac{1}{20}+\frac{1}{12} \\ \frac{1}{C}=\frac{2+3+5}{60}=\frac{10}{60}=\frac{1}{6} \\ C=6 \end{gathered}[/tex]

Hence, the total capacitance is 6µF

You have a light spring which obeys Hooke's law. This spring stretches 3.02 cm vertically when a 2.50 kg object is suspended from it. Determine the following.(a) the force constant of the spring (in N/m)N/m(b) the distance (in cm) the spring stretches if you replace the 2.50 kg object with a 1.25 kg objectcm(c) the amount of work (in J) an external agent must do to stretch the spring 8.90 cm from its from unstretched positionJ

Answers

We are given that a spring stretches 3.02 cm vertically when a 2.5 kg object is suspended.

Part (a) To determine the constant of the spring we need first to determine the weight of the object, to do that we will use the following formula:

[tex]W=mg[/tex]

Where:

[tex]\begin{gathered} m=\text{ mass} \\ g=\text{ acceleration of gravity} \end{gathered}[/tex]

Now we plug in the values:

[tex]W=(2.5\operatorname{kg})(9.8\frac{m}{s^2})[/tex]

Solving the operations we get:

[tex]W=24.5N[/tex]

Now we use Hooke's law:

[tex]F=kx[/tex]

Where:

[tex]\begin{gathered} F=\text{ force} \\ k=\text{ spring contant} \\ x=\text{ distance stretched} \end{gathered}[/tex]

Now we solve for "k" by dividing both sides by "x":

[tex]\frac{F}{x}=k[/tex]

Now, since the object is placed vertically this means that the only force acting on the spring in the weight of the object, therefore:

[tex]F=W[/tex]

Now we plug in the known values:

[tex]\frac{24.5N}{3.02\operatorname{cm}}=k[/tex]

Solving the operations we get:

[tex]8.11\frac{N}{\operatorname{cm}}=k[/tex]

Since we are required to express the constant in N/m, we need to convert the centimeters into meters. To do that we will use the following conversion factor:

[tex]100\operatorname{cm}=1m[/tex]

Now we multiply by the conversion factor in decimal form, placing the centimeters as numerator:

[tex]8.11\frac{N}{\operatorname{cm}}\times\frac{100\operatorname{cm}}{1m}=811.26\frac{N}{m}[/tex]

Therefore, the constant of the spring is 811.26 N/m.

part (b) Now we are asked to determine the distance is an object of 1.25 kg is place. First, we determine the weight of the new object:

[tex]W=mg[/tex]

Now we plug in the values:

[tex]W=(1.25\operatorname{kg})(9.8\frac{m}{s^2})=12.25N[/tex]

Now we use Hooke's law, but we solve for the distance "x" by dividing both sides by the constant "k", we get:

[tex]\frac{F}{k}=x[/tex]

Just as before, the only force acting is the weight, therefore, we plug in the values we got:

[tex]\frac{12.25N}{811.26\frac{N}{m}}=x[/tex]

Solving the operations:

[tex]0.015m=x[/tex]

Now we convert the meters into centimeters using the same conversion factor:

[tex]0.015m\times\frac{100\operatorname{cm}}{1m}=1.5\operatorname{cm}[/tex]

Therefore, the new mass stretches the spring 1.5 centimeters.

Part (c) Now we are asked to determine the work that has to be done on the spring to stretch it 8.9 centimeters. To determine that we will use the following formula for the work done on a spring:

[tex]w=\frac{1}{2}kx^2[/tex]

Now we replace the values:

[tex]w=\frac{1}{2}(811.26\frac{N}{m})(8.9\operatorname{cm})^2[/tex]

We will first convert the 8.9 centimeters into meters:

[tex]8.9\operatorname{cm}\times\frac{1m}{100\operatorname{cm}}=0.089m[/tex]

Now we replace this in the formula for the work:

[tex]w=\frac{1}{2}(811.26\frac{N}{m})(0.089m)^2[/tex]

Solving the operations we get:

[tex]w=3.21J[/tex]

Therefore, the work is 3.21 Joules.

Question one I need an explanation Pls. Only part a and b.

Answers

Given,

The velocity of the objects, v₁=50.0 m/s and v₂=-25.0 m/s

The initial positions of the objects, x₁_₀=0.00 m and x₂_₀=500 m

The relative velocity of the objects is given by,

[tex]v=v_1-v_2[/tex]

On substituting the known values,

[tex]\begin{gathered} v=50.0-(-25.0) \\ =75.0\text{ m/s} \end{gathered}[/tex]

The total distance between the objects is,

[tex]\begin{gathered} d=x_{10}+x_{20} \\ =0+500 \\ =500\text{ m} \end{gathered}[/tex]

(a)

As the two objects are traveling towards each other in a straight line, they will intercept.

The time it takes for the objects to intercept is given by,

[tex]t=\frac{d}{v}[/tex]

On substituting the know values,

[tex]\begin{gathered} t=\frac{500}{75} \\ =6.67\text{ s} \end{gathered}[/tex]

As t is the time it takes for the objects to intercept, the distance covered by the objects in this time will give us the position x_f where these two objects intercept.

As object 1 starts from the origin, the distance traveled by this object is equal to x_f

The distance traveled by object 1 in that time is,

[tex]x_f=d_1=v_1t[/tex]

On substituting the known values,

[tex]\begin{gathered} x_f_{}=50\times6.67 \\ =333.5m\text{ } \end{gathered}[/tex]

Thus the objects will intercept at the point x_f=333.5 m from the origin.

(b)

As calculated in part a, the time it takes for the objects to intercept is t=6.67 s

How would you go about answering this question?

Answers

The new angular velocity becomes  0.286 rev/s.

Given parameters:

Mass of the marry go round: M = 120 kg.

Radius of the marry go round: r = 1.80 m.

Mass of the boy: m = 27 kg.

Initial angular velocity of the marry go round: ω₁ = 0.350 rev/s.

Final angular velocity of the marry go round: ω₂ = ?

From the principle of conservation of angular momentum;

Initial angular momentum = final angular momentum

⇒ 1/2 Mr²ω₁ = 1/2( M+m)r²ω₂

⇒ ω₂ = Mω₁/(m+M)

= 120×0.35/(120+27) rev/s

= 0.286 rev/s.

So, final angular velocity of the marry go round: ω₂ = 0.286 rev/s.

Learn more about angular velocity here:

https://brainly.com/question/12446100

#SPJ1

A standing wave is produced by reflecting a wave off a wall (which acts like a fixed end). If the standing wave consists of 6 anti-nodes and 7 nodes and the wall is 12m away from the source determine the wavelength.

Answers

Answer:

4 m

Explanation:

We can represent the standing wave as follows

So, we can divide the total distance into 6 parts as follows

12 m/6 = 2 m

Then, 2 m is the distance from node to node. It means that the wavelength will be twice this distance, so

wavelength = 2 x 2m = 4m

Therefore, the wavelength is 4m

If it takes 0.8 s for your voice to be heard at a distance of 272 m, what is the temperature of the air?

Answers

V = 331 + 0.59 Tc

v= d/t = 272 / 0.8 = 340 m/s

340 = 331 + 0.59 Tc

340 - 331 = 0.59 TC

9 = 0.59 Tc

9/0.59 = Tc

Tc = 15.25°C

An object is placed 3.00 cm in front of a concave lens with a focal length of 5.00 cm. Find the image distance.

Answers

ANSWER:

-1.88 cm

STEP-BY-STEP EXPLANATION:

The situation would be the following:

Given:

Object distance (u): -3 cm

Focal distance (f): -5 cm

Using the lens formula, we calculate the distance of the image:

[tex]\begin{gathered} \frac{1}{v}-\frac{1}{u}=\frac{1}{f} \\ \\ \text{We replacing} \\ \\ \frac{1}{v}-\frac{1}{-3}=\frac{1}{-5} \\ \\ \frac{1}{v}\cdot \:15v-\frac{1}{-3}\cdot \:15v=\frac{1}{-5}\cdot \:15v \\ \\ 15+5v=-3v \\ \\ 5v=-3v-15 \\ \\ 8v=-15 \\ \\ v=-\frac{15}{8} \\ \\ v=-1.88\text{ cm} \end{gathered}[/tex]

The image distance is -1.88 cm

Answer:

Explanation:

yfdyrdrd

The diagram below shows a block on a horizontal, frictionless surface. A 100.-newton force acts on the block at an angle of 30.0° above the horizontal. 100. N F 30.0° Block 77 Frictionless Surface What is the magnitude of force F, to the nearest tenth of a newton, if it establishes equilibrium?

Answers

ANSWER:

STEP-BY-STEP EXPLANATION:

which Vector goes from 5, 5 to 4, 0

Answers

The required vector is  î + 5ĵ

Those physical quantities that have magnitude, as well as direction, are represented by a Vector.  Some examples of Vector quantities are Force, Acceleration, Velocity, and Torque.

According to the given information, we represent the points in vector form,

The 1st vector is [tex]R_{1}[/tex] = 5î + 5ĵ

And the Second Vector is [tex]R_{2}[/tex] = 4î

Now, it is given that the required vector goes from 5,5 to 4,0.

So, the required vector is R,

Thus, R = (5-4)î + (5-0)ĵ

R = î + 5ĵ

Hence, the required vector is  î + 5ĵ

To read more about vectors, visit https://brainly.com/question/13322477

#SPJ1

Answer:

Vector B

Explanation:

You have a coin sitting on
a card on top of a glass. You want to put the
coin into the glass, but you are not allowed
to pick up the card. Think of how you can do
that. Then write a short explanation of why
it works that would make sense to someone
who doesn't remember Newton's laws of
motion.

Answers

Answer:

You can flick the car to the side so that the coin can fall through.

Explanation:

Tsunami waves flood coastal and inland areas and affect coastal life. Which of these properties of tsunami waves most contributes to the flooding? The low friction of waves at the shoreline The high friction of waves at the shoreline The high amplitude of the waves at origination The huge volume of water that surges across shore

Answers

Take into account that the flooding produced by Tsunami waves has a great level of energy.

Moreover, consider that the amplitude of the waves determines the energy of the waves and then, the flooding is produced primarily by the high amplitude of the waves at origination.

A crate is at rest on an inclined plane. As the slope increases the crate remains at rest until the incline reaches an angle of 32.7° from the horizontal. At this angle the crate begins to slidedown the ramp.Apply Newton's 1st or 2nd law to each axis of the Free body diagram.

Answers

The free body diagram of the crate can be shown as,

According to free body diagram, the net force acting on the crate is,

[tex]F=mg\sin \theta-f\ldots\ldots\text{ (1)}[/tex]

The frictional force acting on the crate can be given as,

[tex]f=\mu N[/tex]

According to free body diagram, the normal force acting on the crate is,

[tex]N=mg\cos \theta[/tex]

Therefore, the frictional force becomes,

[tex]f=\mu mg\cos \theta[/tex]

According to Newton's second law, the net force acting on the crate is,

[tex]F=ma[/tex]

Therefore, equation (1) becomes,

[tex]\begin{gathered} ma=mg\sin \theta-\mu mg\cos \theta \\ a=g\sin \theta-\mu g\cos \theta \end{gathered}[/tex]

Thus, the net acceleration of the crate can be expressed using Newton's second law as,

[tex]a=g\sin \theta-\mu\cos \theta[/tex]

A cord is wrapped around the rim of a wheel 0.230 m in radius, and a steady pull of 37.0 N is exerted on the cord. The wheel is mounted on frictionless bearings on a horizontal shaft through its center. The moment of inertia of the wheel about this shaft is 4.60 kg⋅m2.

Answers

The angular acceleration of the wheel is 1.85m/s²

Acceleration is the rate at which speed and direction of velocity vary over time. Something is said to be accelerating when it starts to move faster or slower.

We are given that,

The pull force of the wheel = τ = 37.0N

The radius of the wheel = r = 0.230m

The moment of inertia = I = 4.60kg-m²

Here the angular acceleration = α = ?

The formula for angular acceleration can be given as,

α = τ /I

α = [(37.0N)×( 0.230m)]/4.60kg-m²

α = 1.85 m/s²

Hence , the angular acceleration of the wheel would be 1.85m/s²

To know more about acceleration

https://brainly.com/question/13925550

#SPJ1

A girl holds an arrow in her hands, ready to shoot the arrow at a dragon who is just outside her arrow’s range of 45 meters. The girl then slides down a cliffside, giving her a velocity of 8.5 m/s at an angle of 45 below the horizontal. She points her bow 30 degrees above the horizontal and shoots, the arrow leaves the bow with a velocity of 45 m/s. The girl is 55 meters away from the dragon horizontally. How far above the girl is the dragon? (Assuming the arrow hits.)I already figured out how long it takes for the arrow to reach the dragon (4.72 seconds) but I don’t know how to calculate the distance between the girl and the dragon. Please help!

Answers

First, assume that the arrow leaves the bow with a velocity of 45 m/s above the horizontal with respect to the bow.

Since the bow is moving at 8.5 m/s 45º below the horizontal, find the initial velocity of the arrow with respect to the ground:

[tex]\vec{v}_{AG}=\vec{v}_{AB}+\vec{v}_{BG}[/tex]

This equation reads:

The velocity of the arrow with respect to the ground is equal to the velocity of the arrow with respect to the bow plus the velocity of the bow with respect to the gound.

Notice that this is a vector equation. Then, the vertical and horizontal components of the velocities must be added separately:

[tex]\begin{gathered} v_{AG-x}=v_{AB-x}+v_{BG-x} \\ v_{AG-y}=v_{AB-y}+v_{BG-y} \end{gathered}[/tex]

Find the vertical and horizontal components of the velocity of the arrow with respect to the bow and the velocity of the bow with respect to the ground:

[tex]\begin{gathered} v_{AB-x}=v_{AB}\cos (\theta) \\ =45\frac{m}{s}\cdot\cos (30º) \\ =38.97\frac{m}{s} \end{gathered}[/tex]

[tex]\begin{gathered} v_{AB-y}=v_{AB}\sin (\theta) \\ =45\frac{m}{s}\sin (30º) \\ =22.5\frac{m}{s} \end{gathered}[/tex]

Similarly, for the velocity of the bow with respect to the ground:

[tex]\begin{gathered} v_{BG-x}=6.01\frac{m}{s} \\ v_{BG-y}=-6.01\frac{m}{s} \end{gathered}[/tex]

Then, the vertical and horizontal components of the initial velocity of the arrow with respect to the ground, are:

[tex]\begin{gathered} v_{AG-x}=38.97\frac{m}{s}+6.01\frac{m}{s}=44.98\frac{m}{s} \\ \\ v_{AG-y}=22.5\frac{m}{s}-6.01\frac{m}{s}=16.49\frac{m}{s} \end{gathered}[/tex]

Use the horizontal component of the velocity to find how long it takes for the arrow to travel a horizontal distance x of 55 meters. Then, use that time to find the vertical position of the arrow.

Since the horizontal movement of the arrow is uniform, then:

[tex]v_{AG-x}=\frac{x}{t}_{}[/tex]

Isolate t and substitute x=55m, v_{AG-x}=44.98 m/s:

[tex]\begin{gathered} t=\frac{x}{v_{AG-x}} \\ =\frac{55m}{44.98\frac{m}{s}} \\ =1.2227s \end{gathered}[/tex]

The vertical motion of the arrow is a uniformly accelerated motion. Then, the vertical position is given by:

[tex]y=v_{AG-y}t-\frac{1}{2}gt^2[/tex]

Replace v_{AG-y}=16.49 m/s, t=1.2227s and g=9.81 m/s^2 to find the vertical position of the arrow when the horizontal position is 55 meters. This matches the elevation of the dragon with respect to the girl when the girl shoots:

[tex]\begin{gathered} y=(16.49\frac{m}{s})(1.2227s)-\frac{1}{2}(9.81\frac{m}{s^2})(1.2227s)^2 \\ =12.829\ldots m \\ \approx12.8m \end{gathered}[/tex]

Therefore, the dragon is 12.8 meters above the girl when the arrow is shoot.

I need full explanation on how to solve both these questions I don't understand haha

Answers

Given that weight of 1 kg is equivalent to the weight of 2.2 lb.

The weight of one kg or 2.2 lbF is 9.8 N

(a)

The weight of 2.2 lbF is 9.8 N

Thus the force of 1.0 lbF is,

[tex]\begin{gathered} 1.0\text{ lbF}=\frac{1.0\text{ lbF}\times9.8\text{ N}}{2.2\text{ lbF}} \\ =4.45\text{ N} \end{gathered}[/tex]

Thus the force of the weight of 1.0 lbF is 9.8 N

(b)

If the thrusters are meant to use the value in N but used it in lbF, then the trusters would have used, say, 9.8 lbF in place of 9.8 N.

The force of 9.8 lbF is greater than the force of 9.8 N. Thus the force applied to slow the craft is higher than intended.

Thus they would slow the craft more.

(c)

Yes, the failure is correctly explained by the unit mix-up. As it is explained in part b, the force applied will be higher than intended. Which is exactly the case.

Thus the failure is correctly explained by the mix-up.

A ship's wheel has a moment of inertia of 0.930 kilogram·meters squared. The inner radius of the ring is 26 centimeters, and the outer radius of the ring is 32 centimeters. Disagreeing over which way to go, the captain and the helmsman try to turn the wheel in opposite directions. The captain applies a force of 314 newtons at the inner radius, while the helmsman applies a force of 290 newtons at the outer radius. What is the magnitude of the angular acceleration of the wheel?

Answers

We can use the formula of the moment of inertia given by:

[tex]r\cdot F=I\alpha[/tex]

Where:

r = Distance from the point about which the torque is being measured to the point where the force is applied

F = Force

I = Moment of inertia

α = Angular acceleration

So:

[tex]\begin{gathered} r\cdot F=(-0.26\times314+290\times0.32)=92.8-81.64=11.16 \\ I=0.930 \\ so,_{\text{ }}solve_{\text{ }}for_{\text{ }}\alpha: \\ \alpha=\frac{r\cdot F}{I} \\ \alpha=\frac{11.16}{0.930} \\ \alpha=\frac{12rad}{s^2} \end{gathered}[/tex]

Answer:

12 rad/s²

A ball is moving at 4 m/s and has momentum 48 kg.m/s. What is the ball's mass (in kilograms)?

Answers

Given:

The speed of the ball is v = 4 m/s

The momentum of the ball is p = 48 kg m/s

Required: The mass of the ball

Explanation:

The mass of the ball can be calculated as

[tex]\begin{gathered} p=mv \\ m=\frac{p}{v} \\ m=\frac{48\text{ kg m/s}}{4\text{ m/s}} \\ =12\text{ kg} \end{gathered}[/tex]

Final Answer: The mass of the ball is 12 kg.

Two billiard balls collide elastically ball A has a mass of 1.22 kg and an initial velocity of 0.8 M/S Ball B has a mass of 1.37 KG and an initial velocity of 0 M/S assuming that all of ball A’s is momentum is transferred to ball B after the collision what is the final velocity of Ball B ? *a perfect momentum transfer means that what was moving before the collision will not move after the collision and vice versa.A) 0.377 m/sB) 0.976 m/sC) 0.712 m/sD) 0 m/s

Answers

We will have the following:

[tex]\begin{gathered} (1.22kg)(0.8m/s)+(1.37kg)(0m/s)=(1.22kg)(0m/s)+(1.37kg)v_f \\ \\ \Rightarrow0.976kg\ast m/s=1.37kg\ast v_f\Rightarrow v_f=\frac{0.976kg\ast m/s}{1.37kg} \\ \\ \Rightarrow v_f=\frac{488}{685}m/s\Rightarrow v_f\approx0.712m/s \end{gathered}[/tex]

So, the final velocity will be approximately 0.712 m/s.

_7. What happens to the total resistance of the resistors if they are connected inparallel? A. increases C. decreases B. remains the same D. increases then decreases

Answers

In order to find what happens to the total resistance when resistors are connected in parallel, let's analyze the formula below for the total resistance between two resistors in parallel:

[tex]\begin{gathered} \frac{1}{RT}=\frac{1}{R_1}+\frac{1}{R_2}\\ \\ RT=\frac{R_1R_2}{R_1+R_2} \end{gathered}[/tex]

When two resistors are in parallel, they have the same voltage.

That means more current will flow, because there will be current flowing from each resistor and the voltage is the same.

Calculating the total resistance, we will find a smaller resistance than the two resistors used, because with the same voltage, the current is greater.

Therefore the correct option is C.

In a tug-of-war two teams are pulling in opposite directions, but neither team ismoving. What do the net forces equal in this example?

Answers

so, the net forces equal zero

Explanation

Step 1

Draw the situation

Newton's first law says that if the net force on an object is zero, then that object will have zero acceleration

in this case due to neither team is moving, we can say the center point is at rest,so its acceleration is zero

According to Newton's law, as the object is at rest, the sum of the forces acting on it equals zero

so

sum of forces = 0

the forces are due to the teams pulling so,

[tex]\begin{gathered} \text{Force team 1 -force team 2= 0} \\ \text{if we move the second term to the rigth} \\ \text{Force team 1=Force team }2 \end{gathered}[/tex]

so, the net forces equal zero

1)A weight lifter raises a 180 kg barbell to a height of 1.95 m. What is the increase in the potential energy of the barbell? 2)A 20.0 kg rock is on the edge of a 100 m cliff. What is the velocity of the rock just before it hits the grounds when it is pushed off the cliff?

Answers

Question 1.

Given:

Mass of barbell = 180 kg

Height = 1.95 m

Let's find the increase in the potential energy of the barbell.

To find the potential energy, apply the formula:

PE = mgh

Where:

m is the mass = 180 kg

g is acceleration due to gravity = 9.8 m/s²

h is the height = 1.95 m

Input values into the formula and solve:

PE = 180 x 9.8 x 1.95 = 3439.8 J

Therefore, the increase in the potential energy of the barbell is 3439.8 J

ANSWER:

3439.8 J

Equations of linear motion

Answers

The Newton's equations of motion are stated below

v = u + at

s = ut 1/2at^2

v^2 = u^2 + 2as

s = 1/2(u + v)t

where

u represents initial velocity

v represents final velocity

t represents time

a represents acceleration

A 6 kg sign is suspended by two strings making angles with the ceiling as shown in the diagram. Determine the magnitudes of the tensions in each string. Remember that 1kg exerts a force of 9.8 N. please use sine/cosine law for this question

Answers

The triangle representing the given scenario is shown below

T1 and dT2 represents the tension in each spring

We would apply the sine rule which is expressed as

a/SinA = b/SinB = c/SinC

where

A, B and C are the angles of the triangle

a, b and c are the sides opposite the respective angles

Thus,

A = 42

a = T1

B = 23

b = T2

C = 115

c = 58.8

T1/sin42 = 58.8/sin115

By cross multiplying, it becomes

T1sin115 = 58.8sin42

T1 = 58.8sin42/sin115

T1 = 43.41

T2/sin23 = 58.8/sin115

By cross multiplying, it becomes

T2sin115 = 58.8sin23

T2 = 58.8sin23/sin 115

T2 = 25.35

The magnitude of the tension in each string are 43.41 N and 25.35 N

Other Questions
The total cost of a jacket and shirt was $75.08 if the price of the jacket was $5.32 less than the shirt what was the price of the jacket At a fundraiser hosted by a local restaurant, customers can pay as much or as little as they like for a meal, as long as they pay at least $1. any profits are donated to a local charity. one evening, the mean (average) price paid per customer was $55. one more customer walked in and paid $70 for a meal, bringing the average up to $56. what is the highest possible price that a customer could have paid for their meal that evening? do you think the amounts in your solution are reasonable.in your solution are reasonable for this situation? An athlete swings a 7.9 kg ball horizontally on the end of a rope. The ball moves in a circle of radius 0.9 m at an angular speed of 0.27 rev/s. Part BNow youll attempt to copy your original triangle using two of its angles:Choose two of the angles on ABC, and locate the line segment between them. Draw a new line segment, DE, parallel to the line segment you located on ABC. You can draw DE of any length and place it anywhere on the coordinate plane, but not on top of ABC.From points D and E, create an angle of the same size as the angles you chose on ABC. Then draw a ray from D and a ray from E through the angles such that the rays intersect. You should now have two angles that are congruent to the angles you chose on ABC.Label the point of intersection of the two rays F, and draw DEF by creating a polygon through points D, E, and F.Take a screenshot of your results, save it, and insert the image in the space below. Consider the following function.f(x) = |x 9|Find the derivative from the left at x = 9. If it does not exist, enter NONE.Find the derivative from the right at x = 9. If it does not exist, enter NONE. Alicia has at most $196 to buy a new baseball gloves and a new baseball hat. What inequality can represent this? which of the following value are solutions to the inequality -5>6x+9 the virulence of e. coli o157:h7 is due in part to a pathogenicity island, an element that can best be described as the product of 8 and a number increased by 17 Parallelogram ABCD was translated to parallelogram AB'C'D'.How many units and in which direction were the x-coordinates of parallelogram ABCD moved? Pythagorean Theorem Task Card #1 A pool table is 9 feet long and 5 feet wide. How far is it from one corner pocket to the diagonally opposite corner pocket? Round to the nearest tenth. Alexander is a stockbroker. He earns 13% commission each week. Last week, he sold $7,500 worth of stocks. How much did he make last week in commission? If he averages that same amount each week, how much did he make in commission in 2011? Last week, he made $ in commission. at the rate shown in the table how many books were sold in 3 weeks The table gives a set of outcomes and their probabilities. Let A be the event "the outcom less than or equal to 2". Let B be the event "the outcome is a divisor of 3". Find P(AB). Outcome Probability 1 0.2 2 0.6 3 0.2 Give directions to a person to get to your school from your home. What is the value of u? H 88 U +64 I K 88 50 J U = use the distributive property to solve 4 ( 10 + 7) An arithmetic sequence has the followingproperties:i) Its 6th term is 15.ii) Its 9th term is three times the 2nd term.Find the 100th term of this sequence. I went to the bank 4 times last week and withdrew a total of $160. What was theaverage amount withdrew each time? Write and solve an expression to find theanswer plants usually extract these elements from soil, and humans obtain them from plant foods or from animals that have eaten plants and they are inorganic elements essential to human metabolism. in nutrition these elements are called